説明

Fターム[3G093CB07]の内容

Fターム[3G093CB07]に分類される特許

241 - 260 / 839


車両(1)のドライブトレイン(7〜13)を駆動するように備え付けられたエンジン(2)と、前記エンジン(2)に供給される空気の圧力を上昇させるように備え付けられた少なくとも一つの過給機(19)と、前記過給機(19)にトルクが伝達されるように連結可能な、もしくは連結されている、前記過給機(19)を駆動するように、または前記過給機(19)の駆動を支援するように備え付けられた電気機械(22)とを有する車両(1)。前記ドライブトレイン(7〜13)が、前記電気機械(22)にトルクが伝達されるように連結可能である、もしくは連結されている。
(もっと読む)


【課題】走行シーンに応じて駆動力制御と変速制御の間で適切に優先付けすることで、走行シーンにかかわらずシステム保護と運転性向上のバランスを図ることができる電動車両の制御装置を提供すること。
【解決手段】電動機を含む複数の動力源と、電気無段変速機10と、摩擦クラッチ7を有する機械有段変速機6と、駆動力制御手段と、機械有段変速機6の変速制御手段と、を備えている。このハイブリッド車両において、駆動力の増減情報と車速の増減情報を取得し、駆動力指令と変速指令の同時出力時であり、かつ、駆動力と車速のうち少なくとも一方が増加する場合、駆動力制御より変速制御を優先する制御を行い、駆動力指令と変速指令の同時出力時であり、かつ、駆動力と車速のうち少なくとも一方が減少する場合、変速制御より駆動力制御を優先する制御を行う駆動力/変速協調制御手段を設けた。 (もっと読む)


【課題】パラレル式ハイブリッド電気自動車の制御装置に関し、低コストで製造できるようにしながら、エンジンと電動機とをより効率よく作動させることができるようにする。
【解決手段】エンジン11の出力軸11aと電動発電機12の回転軸12aとの間に介装されたマニュアル式のクラッチ13と、電動発電機12と駆動輪18との間に介装され、電動発電機12の回転軸12aに入力軸14aを結合されたマニュアル式変速機14と、電動発電機12に電力を供給し、電動発電機12の発電電力を充電されるバッテリ19と、を備え、クラッチ状態検出手段32aにより検出されたクラッチ13の操作状態と、アクセル状態検出手段31aにより検出されたアクセルの操作状態と、充電率検出手段23により検出されたバッテリ19の充電率とに基づいて、電動機トルクを算出し、該電動機トルクが発生するように電動発電機12を制御する制御手段24と、を備える。 (もっと読む)


【課題】変速機のフリクションによる回生量の低下を防止する。
【解決手段】車両において、内燃機関1と、モータジェネレータ5と、クランクシャフト15の回転速度を任意の回転速度に変速する変速装置3と、変速装置3によって変速されたクランクシャフト15の回転を左右の駆動輪41に伝達するドライブシャフト4と、クランクシャフト15とモータジェネレータ5の回転軸との間に設けられた第1動力伝達機構11,13,51と、第1動力伝達機構11,13,51の動力伝達を断接する第1クラッチ12と、ドライブシャフト4とモータジェネレータ5の回転軸との間に設けられた第2動力伝達機構42,52,53と、第2動力伝達機構42,52,53の動力伝達を断接する第2クラッチ54と、変速装置3からドライブシャフト4への動力伝達を断接する第3クラッチ43と、を備える。 (もっと読む)


【課題】燃料カットの実行から燃料噴射の復帰への頻度を低減して燃料消費率のより一層の向上を図ることのできる車両の制御装置を提供する。
【解決手段】この車両の制御装置は、燃料カットの実行中に機関回転速度NEが復帰回転速度NERを下回ることを示す条件を条件Aとして、この条件Aに基づいて同燃料カットを終了する内燃機関と、この内燃機関に対してロックアップクラッチを有するトルクコンバータを介して接続される無段変速機とを備える車両の内燃機関及び変速機構の制御を行う。そして、内燃機関の自動停止を行う旨の要求があることを示す条件を条件Bとして、ロックアップクラッチが締結されているとき且つ条件Aが成立しているとき且つ条件Bが成立しているときには燃料カットの実行及びロックアップクラッチの締結を継続する継続制御を行う。 (もっと読む)


【課題】モードの切り替えにより生じる制動力または駆動力の変化を、一層確実に抑制することのできる制駆動力制御装置を提供する。
【解決手段】アクセルペダルの操作量またはブレーキペダルの操作量のいずれか一方を用いて、車両で発生する駆動力および制動力を求める第1モードと、アクセルペダルの操作量から駆動力を求め、かつ、ブレーキペダルの操作量から制動力を求める第2モードとを相互に切り替えることのできる制駆動力制御装置において、第2モードから第1モードに切り替える条件が成立した際に、アクセルペダルの操作量が所定値を超えると、第2モードから第1モードに切り替えて、アクセルペダルの操作量から駆動力および制動力を求めるモード切替手段(ステップS2ないしS6)を備えている。 (もっと読む)


【課題】触媒劣化抑制制御が実行可能な内燃機関に対し、この触媒劣化抑制制御による効果を得ながらも、触媒劣化抑制制御の実行に起因する運転者の違和感を軽減することが可能な内燃機関の制御装置を提供する。
【解決手段】触媒温度が所定の閾値以上で且つアクセルOFF操作がなされて触媒劣化抑制制御実行条件が成立した際に、ISCVによる吸入空気量を従来の触媒劣化抑制制御開始時の吸入空気量βよりも少ない吸入空気量αに制限する。この吸入空気量をαに制限した状態をエンジン回転数に応じて設定したγ秒間だけ維持する。このγ秒の経過後、エンジン回転数に応じて設定した吸気増量補正量Xで吸入空気量を増量していき、吸入空気量を上記吸入空気量βまで徐変させる。 (もっと読む)


【課題】車両の惰性走行時において、運転者が、車速が増速することによって感じる違和感を抑制する。
【解決手段】内燃機関10を作動状態にして、機関出力のうち駆動輪94に伝達される駆動動力により車両1が駆動されて加速して走行する加速走行と、内燃機関10を非作動状態にして、慣性力により車両1が惰性で走行する惰性走行とを、予め設定された車速域R内において交互に繰り返し行って走行する加速惰性走行を車両1に行わせる。HVECU100は、前記惰性走行中において、速度状態判定手段により、車両1の速度状態が増速状態であること、もしくは車両1の速度状態が増速状態になることの少なくともどちらか一方を判定したとき、加速惰性走行を禁止する。 (もっと読む)


【課題】車両の加速走行時において、車両が下り勾配を走行すると、燃料消費量の少ない走行を行うことができる。
【解決手段】内燃機関10を作動状態にして、機関出力のうち駆動輪94に伝達される駆動動力により車両1が駆動されて加速して走行する加速走行と、内燃機関10を非作動状態にして、慣性力により車両1が惰性で走行する惰性走行とを、予め設定された車速域R内において交互に繰り返し行って走行する加速惰性走行を車両1に行わせる。HVECU100は、前記加速走行中において、前記車両1が路面勾配が下り勾配の路面を走行すると、現車速VRから前記設定された車速域Rの上限に達するまで前記加速走行を行わせる場合の加速時燃料消費量F1に基づいて、前記加速走行の維持、または、前記惰性走行への切り替えのいずれかを選択することを特徴とする。 (もっと読む)


【課題】本発明は、ハイブリット車両の制御システムにおいて、車両の減速時にEGRガス経路内にEGRガスが残留している状態であっても十分な減速力を得ることができる技術の提供を課題とする。
【解決手段】本発明は、内燃機関及び電動機を原動機とするハイブリット車両の制御システムにおいて、内燃機関の運転状態がEGR装置の作動領域から減速フューエルカット運転領域へ移行したときにバッテリの蓄電量が所定の上限量以上であれば、機関回転数を所定回転数以上に維持することにより、EGRガス経路内に残留しているEGRガスを速やかに除去するとともに、車両の減速力の減少を抑制するようにした。 (もっと読む)


【課題】ドライバの意思に相応するエンジン再始動を実現し、エンジン再始動の適正化を図る。
【解決手段】ECU30は、所定の自動停止条件が成立した場合に車両に搭載されたエンジン10を自動停止し、エンジン10の自動停止中に所定の再始動条件が成立した場合にエンジン10を再始動する。このECU30は、変速機13の変速位置がニュートラル以外であること、及びクラッチ操作部材(クラッチペダル17)の操作量が、第1の操作量よりも大きくなった後、該第1の操作量よりも小さくかつエンジン10から変速機13に動力が伝達され始めるクラッチ繋ぎ点(クラッチミートポイント)に相当する繋ぎ操作量よりも大きい第2の操作量よりも小さくなったことを条件としてエンジン10を再始動する。 (もっと読む)


【課題】複数の変速比が段階的に成立させられる変速部と変速部の入力側回転部材に動力伝達可能に連結された電動機とを備える車両用動力伝達装置において、コーストダウンシフトを適切なタイミングで実行することでコーストダウンシフト時の変速部の入力トルクの変化を抑制して変速ショックを抑制する。
【解決手段】減速走行中に第2電動機M2による回生トルクを含む自動変速部20の入力トルクTINが零と判断されることを条件として自動変速部20のコーストダウンシフトが実行されるので、コーストダウンシフトの際は自動変速部20の入力トルクTINが零と判断されるトルク値とされており、コーストダウンシフト完了時に自動変速部20の出力側に表れるトルク変化が可及的に抑制される。このように、自動変速部20の変速を入力トルクTINが零と判断されるときに実行することで、変速時の入力トルクTINの変化が抑制されて変速ショックが抑制される。 (もっと読む)


【課題】吸気弁に可変動弁機構を適用した場合のコースト運転中における適切な制御を提供する。
【解決手段】吸気弁の開閉時期を変化させる可変動弁機構と、機関出力により発電可能なオルタネータと、を備える。コースト運転中での非燃料カット時には、非燃料カット用設定とし、マイナスオーバーラップを付与することで、燃焼安定性を確保する。一方、コースト運転中での燃料カット時には、非燃料カット時と同等の機関減速トルクが得られるように、オルタネータによる発電負荷を制御する。具体的には、バッテリの空き容量が十分ある場合、ポンピングロスが最小となる燃費重視の設定とし、発電量を最大限に確保して燃費向上を図る。バッテリの空き容量が少なくなると、応答性重視の設定として、吸気弁のリフト特性を非コースト運転時の設定に近づけて、加速時におけるリフト特性の切換を速やかに行えるようにする。 (もっと読む)


【課題】運転者の意図に反した車両の移動を抑制する。
【解決手段】電源ECUは、パワースイッチが短押しであって(S100にてYES)、車両の速度Vが予め定められた速度αよりも低いと(S102にてYES)、オートP要求信号を送信するステップ(S104)と、タイマを起動するステップ(S106)と、予め定められた時間Tが経過するまでにPポジション信号およびオートP完了信号を受信すると(S108にてNO,S110にてYES)、IGリレーおよびACCリレーをオフするステップと、予め定められた時間が経過して(S108にてYES)、車両の速度Vが予め定められた速度α以上であると(S116にてNO)、IGリレーおよびACCリレーのオン状態を維持するステップ(S122)とを含む、プログラムを実行する。 (もっと読む)


【課題】車両の減速運転時における走行距離を延ばし、従来よりも燃料消費量を低減できるエンジン制御装置を提供する。
【解決手段】エンジン制御装置3において燃料調整手段の燃料停止信号と、発電状態検出手段により検出された発電状態とに基づいて、減速運転時において発電負荷の増加に応じてスロットルバルブ5の開度を適宜変化させることにより、スロットルバルブ5により生じるエンジンフリクションを小さくして、発電負荷の増加時にその分だけ減速運転時の走行距離を延ばすことができ、かくして走行時における全体的な燃料消費量を低減させることができる。 (もっと読む)


【課題】ロックアップ機能及びフューエルカット機能を解除する際に生じる振動を低減することができる車両停止判定装置を提供する。
【解決手段】車両振動低減装置1は、自動変速機15のロックアップ機能及びエンジン11のフューエルカット機能を制御するECU2を備えている。このECU2では、ロックアップ機能及びフューエルカット機能を解除する際、フューエルカット機能の解除タイミングを、ロックアップ機能の解除タイミングから車両Xの駆動系共振周期の1/2周期分遅延するように設定する。これにより、L/U前後加速度とF/C前後加速度の変動とが互いに相殺するよう作用し合うことになる。 (もっと読む)


【課題】ブレーキのバックアップ制御をより低コストに実現する。
【解決手段】ブレーキ制御装置は、ブレーキECU70を含み、車輪に付与される摩擦制動力をブレーキECU70により制御するブレーキシステムと、ハイブリッドECU7を含み、該車輪に駆動軸を介して付与される駆動力をハイブリッドECU7により制御する駆動システムと、を備える。ハイブリッドECU7は、ブレーキECU70に異常を検出した場合に目標減速度を演算し、駆動システムにより駆動軸に付与可能な制動力を目標減速度に従って制御する。 (もっと読む)


【課題】ハイブリッド車両において、ロック機構の誤解放状態に起因するモータジェネレータの過回転の発生を防止する。
【解決手段】ハイブリッド車両(10)の制御装置(100)は、走行モードとして無段変速モードが選択される場合には、ロック機構(400)が解放状態となるように、且つ、走行モードとして固定変速モードが選択される場合には、ロック機構が係合状態となるように、ロック機構を制御するロック制御手段(110)と、走行モードとして固定変速モードが選択されている場合において、モータジェネレータの回転速度が所定回転速度以上変化したときには、内燃機関(200)の機関回転速度を抑制する回転速度抑制制御を行う回転速度抑制手段(130)とを備える。 (もっと読む)


【課題】運転している内燃機関への燃料噴射を停止されているときに前記内燃機関への燃料噴射を再開する際に、より適正に燃料噴射を再開する
【解決手段】運転しているエンジンへの燃料噴射が停止されているときに燃料噴射を再開する際に、バルブ開フラグFが値1のとき,即ち、EGRバルブの開度が過剰空気導入開度EBref以上であるときには値α1に補正係数k1を乗じたものや値α2に補正係数k2を乗じたものを増量補正量αとして設定し(ステップS130,S150,S160,S180)、基本吸入空気量Qfbに増量補正量αを加えたものを目標燃料噴射量Qf*として設定すると共に目標燃料噴射量Qf*で燃料噴射が行なわれるよう燃料噴射弁126を駆動する(ステップS190)。これにより、より適正に燃料噴射を再開してエンジンの自立運転や負荷運転を開始することができる。 (もっと読む)


【課題】蓄電装置の充電が制限されている最中に電動機を回生制御するときに内燃機関の潤滑油の消費を抑制しつつ電動機の発電電力を内燃機関のモータリングでより確実に消費する。
【解決手段】モータMG2の回生制御により制動力を駆動軸に出力するときには、モータMG2の発電電力がバッテリの入力制限を超える余剰エネルギPexが閾値Pth未満の場合に目標バルブタイミングVVT*に所定タイミングVVT1を設定すると共に非進角用マップを用いて目標スロットル開度Ta*を設定し、余剰エネルギPexが閾値Pth以上でVVT進角要求がある場合に目標バルブタイミングVVT*にタイミングVVT1よりも進角したタイミングVVT2を設定すると共に非進角用マップよりもエンジン回転数Neに対してスロットル開度が大きくなる進角用マップを用いて目標スロットル開度Ta*を設定してエンジンを制御し、モータMG1でエンジンをモータリングする。 (もっと読む)


241 - 260 / 839