説明

Fターム[3G301NE08]の内容

Fターム[3G301NE08]に分類される特許

1 - 20 / 152


【課題】筒内環境に応じた適切な燃料噴射制御を実行することにより、1圧縮始動による迅速な再始動の機会を増やす。
【解決手段】本発明では、エンジンの自動停止後の再始動時に、停止時圧縮行程気筒のピストンが相対的に下死寄りの特定範囲にあるか否かを判定し、特定範囲にある場合には、停止時圧縮行程気筒に最初の燃料を噴射することでエンジンを再始動させる。この停止時圧縮行程気筒への最初の燃料噴射では、圧縮上死点を過ぎてから熱発生率のピークを迎えるようなメイン燃焼を起こさせるメイン噴射と、それよりも前のプレ燃焼を起こさせるプレ噴射とが実行される。プレ噴射は、噴射した燃料がピストンのキャビティ内に収まるようなタイミングで少なくとも1回以上実行されるものであり、その回数および1回あたりの噴射量は、停止時圧縮行程気筒のピストンが圧縮上死点まで上昇する途中のエンジン回転速度(始動時回転速度)に基づいて決定される。 (もっと読む)


【課題】機械的機構の歯打ちなどによる異音の発生を抑制するために電動機からトルクを出力しているときでも、より適正な内燃機関のアイドリング運転時の制御量を学習する。
【解決手段】アイドリング学習条件が成立してアイドリング制御量を学習する際には、モータMG2から押し当てトルクTadを出力しているときには、押し当てトルクTadが大きいほど大きくなる傾向に補正空気量Qadを設定し(S130)、この補正空気量Qadをアイドリング運転時における吸入空気量Qaに加算することによる補正を施してアイドリング空気量Qidlを計算し(S150)、アイドリング空気量Qidlを含むアイドリング制御量を学習する(S160)。これにより、プラネタリギヤの歯打ちなどによる異音の発生を抑制するための押し当てトルクTadをモータMG2から出力しているときでも、より適正なアイドリング制御量を学習することができる。 (もっと読む)


【課題】下流側空燃比センサの応答性が良好でない場合においても、エミッションをよりいっそう改善できる空燃比制御装置を提供する。
【解決手段】触媒下流に配置された下流側空燃比センサの出力値Voxsが減少し且つその出力値Voxsの所定時間あたりの変化量ΔVoxsの大きさ|ΔVoxs|がリーン判定閾値ΔVLeanth以上となったとき目標空燃比abyfrを目標リッチ空燃比afRichに設定する。出力値Voxsが増大し且つ前記変化量ΔVoxsの大きさ|ΔVoxs|がリッチ判定閾値ΔVRichth以上となったとき目標空燃比abyfrを目標リーン空燃比afLeanに設定する。触媒流出ガスの空燃比の変化に対する下流側空燃比センサ56の出力値Voxsの変化の応答性が良好でないほど、リーン判定閾値の大きさが小さくなるようにリーン判定閾値を変更し、リッチ判定閾値の大きさが小さくなるようにリッチ判定閾値を変更する。 (もっと読む)


【課題】燃料を直接燃焼室内に噴射する燃料噴射弁を備える内燃機関において、吸気行程と圧縮行程とにそれぞれ分割して燃料噴射弁から燃料を噴射させる制御を精度よく行い、全体としての燃料消費量を抑制する。
【解決手段】燃料を直接燃焼室内に噴射する燃料噴射弁を備える内燃機関たるエンジンに用いられ、吸気行程と圧縮行程とにそれぞれ分割して燃料噴射弁から燃料を噴射させる制御を行う電子制御装置において、始動時において、排気ガスの温度が上昇するにつれ圧縮行程での燃料噴射の割合を減少させ、吸気行程における燃料噴射量と圧縮行程における燃料噴射量とを合わせた燃料噴射量に対応する目標空燃比が理論空燃比よりもリーンになるように燃料噴射量の制御を行う。 (もっと読む)


【課題】アイドリングストップ制御時における、圧力制御弁の作動にかかるバッテリの消費電力を最小限に抑えることのできる、蓄圧式燃料噴射装置の制御装置及び制御方法並びに蓄圧式燃料噴射装置を提供する。
【解決手段】コモンレールと、ノーマルオープン型の構造を有する圧力制御弁と、コモンレールに接続され内燃機関の気筒内に前記燃料を噴射する燃料噴射弁と、を備えた蓄圧式燃料噴射装置を制御するための制御装置であって、内燃機関の自動停止及び再始動を行うアイドリングストップ制御手段と、自動停止中の前記コモンレール内の圧力低下量を基に、自動停止中における前記圧力制御弁の通電電流値を学習する圧力制御弁通電電流値学習手段と、を備える。 (もっと読む)


【課題】1つの燃焼室に対して複数の吸気ポートに共通な共通吸気通路に、燃焼室への吸気量を制御するスロットル弁がアクチュエータで駆動されるようにして配設され、共通吸気通路から分岐して複数の吸気ポートにそれぞれ接続される複数の分岐吸気通路の1つにスワール制御弁が配設される内燃機関において、機関出力の変化を緩和しつつスワール燃焼領域を拡大する。
【解決手段】制御ユニット30は、スワール制御弁24の閉弁状態および開弁状態の切換前後で機関出力がほぼ等しくなるスロットル開度とするように、アクチュエータ23の作動を制御する。 (もっと読む)


【課題】性能パラメータの相互干渉による制御性悪化の回避を図るとともに、エンジン性能を好適に制御する。
【解決手段】性能パラメータ算出部31は、複数の性能パラメータの目標値をエンジン運転状態に基づいて設定する。また、目標燃費操作部40は、各性能パラメータの実値が目標値に制御されている状態で、燃費の目標値をエミッション排出量の変化量に基づいて性能良化側に操作する。目標燃費操作部40は、複数の性能パラメータと複数の燃焼パラメータとの相関を定義した相関データを用い、燃焼パラメータの動作可能範囲に基づいて各性能パラメータの変化量を算出する性能パラメータ変化量算出部43と、エミッション排出量の変化量が所定の許容範囲にある場合に、燃費の変化量を燃費操作量として設定する燃費操作量設定部44とを有する。燃焼パラメータ算出部32は、各性能パラメータの目標値に基づいて複数の燃焼パラメータの目標値を算出する。 (もっと読む)


【課題】アイドリング運転中の潤滑不足を判定して、潤滑不足を速やかに解消することのできる内燃機関の制御装置を提供する。
【解決手段】本願発明に係る内燃機関の制御装置である電子制御装置100は、クランクポジションセンサ101によって検出される機関回転速度を目標アイドル回転速度に一致させるようにアイドリング運転中の機関回転速度を制御する。電子制御装置100は、クランクポジションセンサ101によって検出される機関回転速度に基づいて内燃機関11における吸気バルブ23aとバルブガイド25aとの摺動部、並びに排気バルブ23bとバルブガイド25bとの摺動部における潤滑不足を推定し、潤滑不足が推定されたときに、アイドリング運転中の機関回転速度を上昇させるアイドルアップを実行する。 (もっと読む)


【課題】電子スロットルバルブの動作角度を制限する機械的な機構を用いない構成で、角度検出手段が異常となっても、モータ制御を継続して電子スロットルバルブを急激な開閉を防止した電子スロットル制御装置を得る。
【解決手段】コントロールユニット1は、異常検出時に、異常検出後の角度情報θ1、θ2を使用せずに、角度検出手段6が異常となる前の角度情報θbと、角度検出手段6が異常となる前のモータ2の供給電力情報と、角度検出手段6の異常が検出されるまでの時間Tbcと、あらかじめ設定したスロットル角度の変化速度とに基づいて、電子スロットルバルブ3を駆動するモータ2を制御する。 (もっと読む)


【課題】 燃料セーブモードと通常モードとを効率よく切り換えて、燃料効率を向上させながら操船性を維持する。
【解決手段】 コントローラ4には、設定回転数と、実回転数とが、入力され、通常モードにおいて、設定回転数と実回転数との差から舶用機関2の燃料供給手段への出力値をPID制御器12が算出する。PID制御器12は、通常モードに比べて単位時間当たりの出力値の変更幅を小さくする燃料セーブモードも有している。設定回転数及び実回転数の変動を監視する検出部20、22、24、26、28を備え、燃料セーブモードにおいて、設定回転数または実回転数が所定範囲を超えたとき、これら検出部の出力によってPID制御部12が通常モードに切り換えられる。 (もっと読む)


【課題】トルク低下を伴う点火時期リタードによらずに、加速時の吸気弁閉時期の変化に伴うノッキングを回避する。
【解決手段】内燃機関の機械的圧縮比(公称圧縮比)を変化させる可変圧縮比機構と、吸気弁閉時期を変化させる可変動弁機構と、によって、有効圧縮比の可変制御が可能となっている。加速時には、目標機械的圧縮比が低下するとともに目標吸気弁閉時期が下死点よりも進み側から下死点よりも遅れ側へ変化するが、可変圧縮比機構や可変動弁機構の作動遅れにより遅れて変化する。実吸気弁閉時期が下死点付近の所定範囲にある間に、燃料増量補正を行い、ノッキングを回避する。 (もっと読む)


【課題】スロットルバルブの実開度が目標開度に対してオーバーまたはアンダーシュートする場合でも、加速時の燃料噴射量を適切に制御できる燃料噴射制御装置を提供する。
【解決手段】スロットルグリップ26の操作状態を検知して、スロットルバルブ28をアクチュエータ31で制御するTBWシステムを備えると共に、スロットルバルブ28の開度Fを検知してインジェクタ29を制御するようにした燃料噴射制御装置において、スロットルバルブ開度センサ31の出力に応じて自動二輪車1の加速状態を検知して燃料の増量補正を実行する際に、スロットルバルブ開度センサ31の出力とスロットルグリップ26の操作状態とに基づいて増量補正値を決定する。自動二輪車1の加速状態が検知された場合であっても、スロットルグリップ26が開き方向に駆動中でない場合には、増量補正値を徐々に減衰させる減衰状態、または、増量補正値をゼロとする中止状態とする。 (もっと読む)


【課題】空燃比切替期間中に良好なメイン燃焼を実現し、トルクショックを防止する。
【解決手段】筒内ガスの空燃比を、通常運転のためのリーンな第1空燃比からリッチな第2空燃比に切り替えると共に、その切り替えの開始t1から終了t2までの切替期間中に吸気絞りを実行する。切替開始前にはメイン噴射Mを圧縮上死点付近で行い、切替終了後にはメイン噴射Mと、噴射燃料が不完全燃焼されるような第1アフタ噴射A1とを行う。切替期間中には、メイン噴射Mを行うと共に、噴射燃料が不完全燃焼されるような第2アフタ噴射A2を、第1アフタ噴射A1よりも早い時期に行う。 (もっと読む)


【課題】組成変動の大きい燃料ガスを使用しても安定したエンジンの起動を確保する。
【解決手段】セルモータと、燃焼用空気中に燃料ガスを供給する燃料ガス供給装置と、エンジン回転数を検出する回転数センサーと、前記燃料ガス供給装置による燃料ガス供給量を制御する制御手段を有するガスエンジンの始動制御方法である。セルモータによる初期クランキング期間(T1)中、前記燃料ガス供給装置による燃料ガス供給量を所定の変更範囲(W1)内で順次増加させ、あるいは順次減少させ、初爆が生じた時の初爆回転数値(Ns)を前記回転数センサーにより検知し、制御手段に入力する動作を実行する。初期クランキング期間(T1)でエンジンが起動しなかった場合に、前記初爆回転数値(Ns)に対応する燃料供給量、たとえば燃料制御弁開度(Qs1)により、再度クランキングを実行する。 (もっと読む)


【課題】機械圧縮比を可変とする圧縮比可変機構を備える内燃機関の制御装置であって、内燃機関が吸気ポートへ燃料を噴射する第一燃料噴射弁と気筒内へ直接的に燃料を噴射する第二燃料噴射弁とを具備し、機関高負荷時から機関低負荷時への運転状態の変化に伴って圧縮比可変機構によって機械圧縮比が徐々に高められている圧縮比過渡状態の間において、機関排気系の触媒装置を溶損させ難くする。
【解決手段】機械圧縮比Cが徐々に高められる圧縮比過渡状態の間(t0からt1)は、第一燃料噴射弁と第二燃料噴射弁との噴射量割合Rを、機関高負荷時の運転に適する第一噴射量割合R1から機関低負荷時の運転に適する第二噴射量割合R2より第一燃料噴射弁の燃料噴射量を多くする第三噴射量割合R3へ徐々に変化させる。 (もっと読む)


【課題】エンジンの補機負荷が重い状況におけるエンジン回転数の落ち込みの抑制と、補機負荷が軽い状況におけるエンジン回転数の過大化の抑制とを両立させる。
【解決手段】エンジン回転数NEが目標回転数NESETを一旦上回った後、再度その目標回転数NESETを下回ったことを条件として前記始動時補正量DSTAの減衰を停止し、前記始動時補正量DSTAの減衰を停止した後、エンジン回転数NEと目標回転数NESETとの差が所定閾値y以内に収束するまでの間、前記始動時補正量DSTAの減衰を停止し続ける。エンジン回転数NEと目標回転数NESETとの差が所定閾値y以内に収束したときに、始動時補正量DSTAの減衰を再開する。 (もっと読む)


【課題】内燃機関の排気経路に設けられる触媒の劣化を効果的に抑制する。
【解決手段】内燃機関の制御装置は、ガス燃料を供給するガス燃料供給手段(310,320,330)及び液体燃料を供給する液体燃料供給手段(410,420,430)を有する内燃機関(200)の制御装置であって、内燃機関の排気経路に設けられた触媒(123)の温度を検出する触媒温度検出手段(124)と、触媒温度検出手段において検出された触媒の温度、若しくは触媒の昇温速度、又は触媒の温度及び触媒の昇温速度の両方に基づいて、ガス燃料供給手段によって供給するガス燃料及び液体燃料供給手段によって供給する液体燃料の供給割合を夫々決定する燃料割合決定手段(100)とを備える。 (もっと読む)


【課題】触媒暖機を実施する際のエミッション性能を高める。
【解決手段】エンジン10は、燃料を直接気筒内に噴射する燃料噴射弁25を備える筒内噴射式である。このエンジン10では、燃料噴射弁25による燃料噴射を圧縮行程で行うことにより成層燃焼が実施される。ECU40は、所定の暖機実行条件が成立した場合に、排気通路に設けられた触媒31の触媒温度を上昇させ、これにより触媒暖機の早期化を図る。特に、ECU40は、燃料噴射弁25に供給される燃料の圧力である噴射弁燃圧を可変制御し、触媒早期暖機を実施する場合に、触媒温度の昇温開始タイミングを含む所定の開始期間において噴射弁燃圧を燃料の微粒化促進のための所定の高燃圧で制御する高燃圧制御を実施し、その後、噴射弁燃圧を所定の高燃圧よりも低い所定の低燃圧で制御する低燃圧制御に切り替える。 (もっと読む)


【課題】吸気を過給する過給機20と、過給された吸気を冷却するインタークーラ12とを備えたエンジン1において、過給圧の高くなる中、高回転域(I)で異常燃焼を抑制するとともに、過給圧の不足しがちな低回転域(II)でエンジン出力を確保する。
【解決手段】所期の過給効果が期待できる中、高回転域(I)では、過給により吸気の充填効率を高めつつ、インタークーラ12により冷却して吸気温度の上昇を抑え、さらにミラーサイクル化によって有効圧縮比を低下させることで、異常燃焼を抑制しながら十分な高出力を得る。そうして異常燃焼を抑制できることから、過給エンジン1であっても従来までのように幾何学的な圧縮比を低めに設定する必要がない。よって、あまり過給効果を期待できない低回転域(II)においてはミラーサイクル化を行わず、相対的に高めの有効圧縮比とすることで、エンジン出力を確保する。 (もっと読む)


【課題】エンジン回転数が急速にアイドリング領域に突入したときに、O2フィードバックによる補正値更新処理の遅れで空燃比がオーバーリッチ傾向になるのを防止する。
【解決手段】補正量決定部25は、排気ガス中の酸素濃度に基づいて、エンジンの空燃比が理論空燃比に収斂するように、燃料の基本噴射時間を補正する補正量KO2を決定する。補正部26は、補正量KO2を使用して燃料噴射時間を算出する。補正量KO2は基準補正量に補正項を加減算して算出される。運転領域判定部20は、エンジン回転数Neが、所定回転数未満のA領域(アイドリング領域)にあるか、所定回転数以上のB領域にあるかを判定する。補正量決定部25が、エンジン回転数域がB領域からA領域へ移行後の所定時間、A領域での補正項として、B領域での第2の補正項より大きい第1の補正項を使用して補正量KO2を算出する。 (もっと読む)


1 - 20 / 152