説明

Fターム[3G384DA04]の内容

内燃機関の複合的制御 (199,785) | 目的 (24,795) | 制御精度の向上 (3,991)

Fターム[3G384DA04]の下位に属するFターム

Fターム[3G384DA04]に分類される特許

121 - 140 / 1,871


【課題】車体の急変動の影響を除いた強制再生を実現することができる作業機械の排気浄化装置の提供。
【解決手段】本発明は、エンジン10の排気中のPMを捕集するフィルタ20と、このフィルタ20の上流と下流の差圧を検出する差圧検出器21と、強制再生が必要な時期に至ったかどうか判定する再生判定部22aを有するコントローラ22を備えており、このコントローラ22が、エンジン10の稼働に関係する状態量、例えばエンジン回転数Nが急変動したかどうかを判定する変動判定部22bを有し、この変動判定部22bによってエンジン回転数Nが急変動したと判定されたとき、再生判定部22aによる判定を、エンジン回転数Nの急変動の影響が少なくなると見做される所定時間Tの間、無効にする処理を行うものから成っている。 (もっと読む)


【課題】噴射制御の安定性向上、及び経年劣化を加味した制御の実現を可能にした燃料噴射状態検出装置を提供する。
【解決手段】降下近似直線Lα、及び上昇近似直線Lβの交点圧力Pαβを算出し、その交点圧力Pαβと基準圧力Pbaseとの圧力差ΔPγに基づき最大噴射率Rmaxを算出する最大噴射率算出手段S21,S22と、噴射率上昇に伴い生じた圧力降下量ΔPを検出する圧力降下量検出手段とを備える。そして、検出された圧力降下量ΔPの経年変化度合いを表した経年劣化率K(経年変化指数)を算出し、その経年劣化率Kから算出される補正比Kaに基づき、最大噴射率算出手段S22により算出される最大噴射率Rmaxを補正する補正手段S23を備える。 (もっと読む)


【課題】車両におけるエンジン及びモータ・ジェネレータが小型化された場合であっても、精度良くエンジントルクを推定する。
【解決手段】エンジントルク推定装置(100)は、エンジン(10)と、該エンジンのクランクシャフト(101)にダンパ(14)を介して接続されたインプットシャフト(131)と、該インプットシャフトに連結されたモータ・ジェネレータ(11)と、を備える車両に搭載される。エンジントルク推定装置は、エンジンの回転角速度、モータ・ジェネレータの回転角速度、及び、インプットシャフトの回転角速度にインプットシャフトの慣性モーメントを乗算した値、に基づいて、エンジントルクを推定する推定手段(20)を備える。 (もっと読む)


【課題】高負荷の領域に限らず、燃料の着火性を判定することができる内燃機関の制御装置を提供する。
【解決手段】ノッキングを検出するノッキング検出手段18と、燃焼室11内に供給されるオゾンを発生するオゾン発生手段23と、内燃機関を制御する制御手段100とを備え、制御手段は、オゾン発生手段により発生されるオゾンを燃焼室11内に供給し、火花点火燃焼により燃焼している状態で、ノッキング検出手段により検出されるノッキングの出力に応じて、内燃機関の燃料の着火性を判定する。 (もっと読む)


【課題】オゾン供給手段の故障を判定するための専用のセンサを設けなくてもよい、内燃機関の制御装置を提供する。
【解決手段】ノッキングを検出するノッキング検出手段18と、内燃機関の燃焼室11内に供給されるオゾンを発生するオゾン発生手段23と、ノッキング検出手段18とオゾン発生手段23とを制御する制御手段100と、を備え、制御手段100は、オゾン発生手段23によるオゾンを燃焼室11内に供給し、火花点火燃焼により燃焼している状態で、ノッキング検出手段18により検出されるノッキングの出力に応じて、オゾン発生手段23の故障を判定する。 (もっと読む)


【課題】多段噴射の前噴射に伴って発生する次噴射の実噴射量の変化を抑制して、安定した噴射精度を得る。
【解決手段】燃料噴射管4aを通じて供給される燃料を燃焼室18に噴射供給する燃料噴射弁4と、燃料噴射弁から一燃焼サイクル中に複数回燃料噴射を実行させる制御手段30を備えた内燃機関1の燃料噴射制御装置において、制御手段30は、内燃機関の定常運転時であって、燃料噴射弁による前噴射と次噴射の噴射期間を一定状態としたまま、前噴射と次噴射の噴射間隔αのみを強制的に変化させた次噴射間隔変動後の前記内燃機関の運転状態の変化に基づき前記燃料噴射管内の圧力変動を推定し、当該推定値に基づいて前記次噴射の噴射期間を変更する。 (もっと読む)


【課題】燃焼ボトム値となる条件を特定するにあたって、EGR制御の為の最適なパラメータを用いることが可能な内燃機関の排気ガス再循環制御装置を提供する。
【解決手段】排気ガス再循環制御装置ECUでは、EGR制御プログラムによって、ウィンドウ設定処理と、波形データ記憶処理と、積分演算処理と、割合特定処理と、バルブ機構制御処理が機能する。そして、かかる一連の処理により、同一条件の中から最適化されたパラメータが用いられるので、最適EGR量RWthとされる条件の特定、及び、当該条件に追従させるEGR制御が、より正確に行われることとなる。 (もっと読む)


【課題】排気管噴射により燃料配管で生じる噴射圧力低下を正確にモニターし、排気噴射量を適切にフィードバック制御できる排気管噴射システムをを提供する。
【解決手段】内燃機関の排気管に燃料を噴射する排気管インジェクタ16と、排気管インジェクタ16に燃料配管24を介して燃料を送液するサプライポンプ12と、燃料配管24の排気管インジェクタ16近くに設けられる圧力補償手段28と、その圧力補償手段28よりも上流側の燃料配管24に設けられる燃料圧センサ29と、燃料圧センサ29のモニター値に基づいて、排気管インジェクタ16の噴射量を調節する噴射制御手段27と、を備える排気管噴射システム11である。 (もっと読む)


【課題】内燃機関を停止させる際に蓄電手段の状態に拘わらずクランクシャフトの停止位置が予め定められた目標停止範囲内に含まれるようにする。
【解決手段】エンジン22の運転を停止させる際にバッテリ50の残容量SOCが判定閾値Sref以上であってバッテリ50の残容量SOCが必要最小限に確保されている場合にはクランクシャフト26の停止位置が目標停止範囲内に含まれるようにモータMGが制御され(ステップS150)、エンジン22の運転を停止させる際にバッテリ50の残容量SOCが判定閾値Sref未満であってバッテリ50の残容量SOCが低下している場合にはクランクシャフト26の停止位置が目標停止範囲内に含まれるように動弁機構28が制御される(ステップS160)。 (もっと読む)


【課題】燃料噴射状態を高精度で制御することの向上を図った燃料噴射制御装置を提供する。
【解決手段】燃圧センサの検出値の変化を表した燃圧波形に基づき噴射率波形(燃料噴射状態)を解析し、解析した噴射率波形から検出パラメータTd(噴射特性値)を検出する。そして、検出した検出パラメータTdを、燃温センサにより検出された燃料温度と関連付けしてECUのメモリ(記憶手段)に記憶して学習させる。そのため、学習した検出パラメータ(特性式L3,L4)を用いて噴射率モデルを作成し、その噴射率モデル及び現時点での燃料温度に基づき、指令噴射開始時期(噴射指令信号)及び指令噴射期間(噴射指令信号)を設定できる。 (もっと読む)


【課題】 電子制御装置のプログラム書換えシステムにおいて、プログラム書換え可能とする電子制御装置が追加される場合に、代表となる電子制御装置のソフトウェア変更だけで対応可能とし、また、通信異常の監視制御を停止する前にプログラムが書換えられる電子制御装置の通信を停止して受信異常を検出する事態を避け、更に、電子制御装置の接続位置の変更に対して、フレキシブルに対応することにある。
【解決手段】 プログラムが書換えられる電子制御装置以外の電子制御装置の内、特定の一つの電子制御装置は、プログラムが書換えられる電子制御装置から送信されるプログラム書換え開始情報を受信した時に、監視制御を停止し、かつ、通信線上への通常時の情報送信を停止するように、プログラムの書換え中である電子制御装置以外の電子制御装置に要求する機能を備えている。 (もっと読む)


【課題】燃料ポンプの消費電力を低減することの可能な燃料供給装置を提供する。
【解決手段】燃料ポンプ2と燃料噴射弁11とを接続する燃料通路9にレギュレータ3が設けられる。レギュレータ3は、下流側燃料通路13の燃料圧力が制御圧P3より低いとき燃料通路9を開放し、下流側燃料通路13の燃料圧力が制御圧P3より高いとき燃料通路9を閉塞する。ECU5は、圧力検出器4の検出した燃料圧力が第1設定圧P1より大きくなると燃料ポンプ2の駆動を停止し、第2設定圧P2より小さくなると燃料ポンプ2を駆動する。第1設定圧P1、第2設定圧P2、制御圧P3は、P1>P2≧P3の関係にある。これにより、燃料ポンプ2から燃料通路9に圧送された燃料は、燃料タンク8に戻されることなく、燃料噴射弁11に供給されるので、燃料ポンプ2の停止時間を長くすることができる。 (もっと読む)


【課題】内燃機関の回転変動や空燃比変動を招いたり燃費悪化や低圧燃料ポンプの寿命低下を招いたりすることなく、的確でタイムリーな燃料圧力変更により燃料ベーパの発生を有効に抑制できる低コストの内燃機関の燃料供給装置を提供する。
【解決手段】内燃機関の燃料を給送可能なフィードポンプ22と、フィードポンプ22からの燃料を加圧する高圧燃料ポンプ31と、加圧された高圧燃料を内燃機関に選択的に供給する第2インジェクタ37A,37Bとを備える内燃機関の燃料供給装置であって、ECU50は、フィードポンプ22から高圧燃料ポンプ31へのフィード燃圧の脈動幅を検出する脈動幅検出部101と、脈動幅検出部101で検出される脈動幅が予め設定された閾値変動幅まで急低下したとき、高圧燃料ポンプ31に給送される燃料中に燃料ベーパを発生させる状態変化が生じたと判定する給送状態判定部102とを含んでいる。 (もっと読む)


【課題】燃料性状判定装置に関し、エンジンに供給される燃料の燃料性状を正確に把握する。
【解決手段】エンジン10の排気空燃比を検出する空燃比検出手段1aと、エンジン10のスロットル弁9の開度量を検出する開度量検出手段1cとを備える。また、開度量検出手段1cで検出された前記開度量の減少時に、空燃比検出手段1aで検出された前記排気空燃比に基づき、エンジン10に供給される燃料の燃料性状を判定する判定手段3を備える。 (もっと読む)


【課題】パージする頻度が少ないときであっても、必要なパージ流量を確保することができる内燃機関の制御装置を提供する。
【解決手段】内燃機関の制御装置は、キャニスタに吸着した蒸発燃料を吸気通路にパージする機能を有するものであって、パージ流量が目標パージ制御量となるようにパージ流量を制御し、所定の条件下でパージをカットし、パージカットからのパージ再開時に、徐々にパージ流量を増加させるパージ制御量の増加率θa、θb、θcをパージカット時間Δtが短いほど大きくすることを特徴とする。 (もっと読む)


【課題】ドライバビリティを損なうことなく、指令噴射量に対するインジェクタ通電時間の設定のずれによって生じる指令噴射量と実噴射量との誤差(τQ誤差)を学習できるようにする。
【解決手段】燃料の噴射時期とトルク感度との関係を示すトルク感度データを予め記憶しておく。τQ誤差の学習を行う場合には、燃料噴射を前段と後段に分けて等噴射量ずつ実行する。その際、目標空燃比に基づいて各段の指令噴射量を決定するとともに、目標のトルクが得られるように各段の噴射時期をトルク感度データに基づいて決定する。そして、決定された指令噴射量と噴射時期とに従って各段の燃料噴射を実行し、そのときの実空燃比を空燃比センサにより計測する。そして、目標空燃比と実空燃比とのずれに基づいてτQ誤差を学習する。 (もっと読む)


【課題】ドライバビリティを損なうことなく、多段噴射時の燃料圧力の脈動によって生じる指令噴射量と実噴射量との誤差(うねり誤差)を学習できるようにする。
【解決手段】燃料の噴射時期とトルク感度との関係を示すトルク感度データを予め記憶しておく。うねり誤差の学習を行う場合には、目標空燃比に基づいて各段の指令噴射量を決定するとともに、前段の燃料噴射から後段の燃料噴射までのインターバルの設定を段階的に変更していく。その際、噴射インターバルの変化の前後においてトルクが一定になるように、変更された噴射インターバルの設定に応じた各段の噴射時期をトルク感度データに基づいて決定する。そして、決定された指令噴射量と噴射時期とに従って各段の燃料噴射を実行し、そのときの実空燃比を空燃比センサにより計測する。そして、目標空燃比と実空燃比とのずれに基づいて、噴射インターバルごとにうねり誤差を学習する。 (もっと読む)


【課題】多段噴射時の燃料圧力の脈動によって生じる燃料噴射量の誤差であるうねり誤差と、指令噴射量に対するインジェクタ通電時間の設定のずれによって生じる燃料噴射量の誤差であるτQ誤差とを切り分けて学習可能にすることで、うねり誤差とτQ誤差の両方を高い精度で学習できるようにする。
【解決手段】最初にうねり誤差を学習する。そして、うねり誤差の学習の完了後、τQ誤差を学習する。 (もっと読む)


【課題】PCCI燃焼の安定運転領域の広い内燃機関システムを提供する。
【解決手段】軽油を燃焼するディーゼルエンジン10と、軽油を供給する燃料インジェクタ43と、水素を添加する水素含有ガス添加手段(水素インジェクタ53)と、ディーゼルエンジン10の排気ガスをEGRガスとして吸気系に添加するEGRガス添加手段(EGR弁61)と、ディーゼルエンジン10のブローバイガスを吸気系に添加するブローバイガス添加手段(ブローバイガス弁71)と、ディーゼルエンジン10の実測筒内圧を検出する筒内圧センサ21と、ディーゼルエンジン10の目標筒内圧を算出する目標筒内圧算出手段(ECU90)と、実測筒内圧と目標筒内圧との偏差が0となるように、燃料噴射手段、水素含有ガス添加手段、前記EGRガス添加手段を制御してPCCI燃焼を制御するPCCI燃焼制御手段(ECU90)と、を備える内燃機関システム1である。 (もっと読む)


【課題】燃料噴射制御装置にて燃料圧力検出のための処理負荷を低減する。
【解決手段】エンジンの各気筒のインジェクタIJnには、燃料取込口の燃料圧力を検出するセンサSnと制御IC31とが設けられており、センサSnが検出した燃料圧力に応じた電圧のセンサ信号が、センサ線LSnを介しECUに入力される。また、制御IC31は、ECUと通信可能であると共に、センサSnが検出した燃料圧力をセンサ信号に変換するときのゲインとセンサ信号のオフセット電位とを調整する手段41,43を備える。そして、ECUのマイコンは、噴射期間を含む特定期間においては、検出対象の燃料圧力の変化範囲を予測し、その予測範囲で燃料圧力が変化するとセンサ信号がAD変換可能な最大電圧範囲で変化するように、上記制御IC31へ指令を与えてゲインとオフセット電位を設定させる。よって、AD変換器のビット数を大きくせずとも燃料圧力の検出分解能が上がる。 (もっと読む)


121 - 140 / 1,871