説明

Fターム[3G384DA15]の内容

内燃機関の複合的制御 (199,785) | 目的 (24,795) | 出力変動、急変防止 (776)

Fターム[3G384DA15]に分類される特許

1 - 20 / 776




【課題】高油温時に内燃機関の回転数を低下させて潤滑部位の冷却性能を向上させることができるとともに、オイルの冷却性能を確保できる低油温時に運転状態が急激に変化するのを防止して、運転者に違和感を与えるのを防止することができる内燃機関の制御装置を提供すること。
【解決手段】内燃機関の制御装置4は、ECU41が、油圧の異常検知時に油温が所定温度Ta以上であることを条件として、油温が所定温度未満である場合よりもスロットルバルブ23の開度を閉じ側に制御するようにスロットルモータ24を駆動することにより、フェールセーフ処理を実行する。 (もっと読む)


【課題】部分負荷状態から加速開始する際のスナッチを抑制するとともに、ドライバビリティを改善した出力制御装置を提供する。
【解決手段】運転者がアクセル操作を入力するアクセル操作部の操作量に基づいて車両の走行用動力源の出力を制御する出力制御装置を、アクセル操作部が所定時間にわたって操作された後、操作量が増加した場合に、アクセル操作部の操作速度及び走行用動力源の推定トルク変化率がそれぞれ所定の閾値以上でありかつ直前の走行用動力源の負荷が所定の閾値以下である場合にのみ走行用動力源のトルク増加を遅延させるトルクダウン制御を実行する構成とする。 (もっと読む)


【課題】触媒での排気浄化を良好に行いつつ、ドライバビリティや騒音の悪化を防止する。
【解決手段】プレ噴射への配分割合ratioを1.0とし補正後プレ噴射量Qpmodを算出する(S10)。補正後プレ噴射量Qpmodがプレ単独補正下限Qpsminより大きければ、プレ噴射への配分割合ratioを1.0とし、補正後メイン噴射量Qmmodを補正前メイン噴射量Qmとする(S12,S14-S16)。プレ単独補正下限Qpsmin以下であれば、補正後プレ噴射量Qpmodを算出する(S12,S18)。プレ噴射量下限Qpminより大きければ、補正後メイン噴射量Qmmodを算出する(S20,S22)。プレ噴射量下限Qpmin以下であれば、補正後プレ噴射量Qpmodをプレ噴射量下限Qpminとし、プレ噴射への配分割合ratioと補正後メイン噴射量Qmmodを算出する(S20,S24-S26)。 (もっと読む)


【課題】燃焼室内で混合気中の燃料に低温酸化反応を生じさせる内燃機関を制御するにあたり、低温酸化反応の有無に起因する機関の出力トルクの変動を抑制する。
【解決手段】燃焼室内で混合気の点火前に混合気中の燃料に低温酸化反応が生じないと推測される所定の条件(低回転数、低負荷、低吸気温)が成立した場合、燃焼室内にマイクロ波若しくは高周波電界を発生させることで、この電界中でOHラジカル等の中間生成物を誘起し、低温酸化反応に代わって燃焼を促進するようにした。 (もっと読む)


【課題】個別空燃比制御を実行可能な内燃機関が車両に搭載されている場合において、車速が比較的低いときに内燃機関の駆動系における歯打ち音の発生、内燃機関における振動の発生、および、内燃機関の排気通路内におけるこもり音の発生を抑制する。
【解決手段】複数の燃焼室を具備する内燃機関であって、これら燃焼室のうち、少なくとも1つの燃焼室である特定燃焼室に形成される混合気の空燃比に基づいて当該内燃機関の平均空燃比が目標空燃比に一致するように前記特定燃焼室以外の燃焼室である非特定燃焼室に形成される混合気の空燃比を制御する個別空燃比制御を実行可能な内燃機関の制御装置を有する内燃機関が車両に搭載されており、該車両の速度が予め定められた速度よりも低いときには、前記個別空燃比制御の実行が禁止される。 (もっと読む)


【課題】エンジンの制御装置に関し、エンジンのトルクショックを抑制しつつ燃費を向上させる。
【解決手段】車両に搭載されたエンジン10に対して要求された要求トルクを演算する要求トルク演算手段3と、要求トルクに遅れ処理を施した遅延トルクを演算する遅延トルク演算手段4とを設ける。また、要求トルク再増加時に遅延トルクに基づいてエンジン10の点火時期を制御する点火制御手段6を設ける。
遅延トルク演算手段4での遅延トルクの演算に際し、エンジン10の吸気応答遅れ以上に速い応答を与える時定数を用いる。 (もっと読む)


【課題】高圧燃料系内の燃料圧力が高い状態で筒内用噴射弁から燃料を噴射するに際して、トルクショックの発生を抑えることのできる内燃機関の燃料噴射制御装置を提供する。
【解決手段】内燃機関1は、低圧燃料系から供給される燃料を吸気通路に噴射するポート噴射用インジェクタ22と、高圧燃料系170から供給される燃料を燃焼室内に直接噴射する筒内噴射用インジェクタ17とを備える。電子制御装置30は、ポート噴射用インジェクタ22のみによる燃料噴射が行われている状態から筒内噴射用インジェクタ17による燃料噴射が開始されるときに、高圧燃料系170内の燃料圧力が所定の判定値以上となっているときには、吸入吸気量を増量する吸気増量処理を行うとともに、この吸気増量処理による機関出力の増大を抑える出力抑制処理を行う。 (もっと読む)


【課題】燃料噴射量の補正値が大きくばらつくことにより、エンジンの稼働の安定性または円滑性が損なわれることを防止する。
【解決手段】フィードバック学習処理により、燃料噴射量を補正するフィードバック学習補正値を、吸入空気圧とエンジン回転数により設定された学習エリアR1〜R4ごとに算定する。イグニッションON時に行われる第1の平準化処理により、フィードバック学習処理の不慮の誤り等により生じたフィードバック学習補正値の大きなばらつきを除去する。また、いずれかの学習エリアについてフィードバック学習処理が行われたことで、フィードバック学習処理が完了した学習エリアに対応するフィードバック学習補正値と、フィードバック学習処理が完了していない学習エリアに対応するフィードバック学習補正値との間に大きなばらつきが生じた場合には、この大きなばらつきを第2の平準化処理により除去する。 (もっと読む)


【課題】複数種類の燃料を使用する内燃機関において、点火遅角制御を行なうことができる点火遅角制御条件をより適切に判断する。
【解決手段】始動後時間、エンジン水温、吸気温、大気圧、点火時期について、使用燃料の性状に合わせてそれぞれの判定値を設定し、始動後時間判断部101、エンジン水温判断部102、吸気温判断部103、大気圧判断部104、点火時期判断部105で、実際に検知された始動後時間、エンジン水温、吸気温、大気圧、点火時期を現在使用中と特定された燃料についての判定値に対して比較した結果として、点火遅角制御条件の成立を判断し、点火遅角制御条件が成立する場合に点火遅角制御部108が現在使用燃料の性状に合わせて点火遅角制御を行なう。 (もっと読む)


【課題】高圧燃料系内の燃料圧力を低下させるために筒内用噴射弁による燃料噴射を行うに際して、トルクショックの発生を抑えることのできる内燃機関の燃料噴射制御装置を提供する。
【解決手段】内燃機関11は、低圧燃料系から供給される燃料を吸気通路に噴射するポート噴射用インジェクタ22と、高圧燃料系170から供給される燃料を燃焼室内に直接噴射する筒内噴射用インジェクタ17とを備える。電子制御装置30は、ポート噴射用インジェクタ22のみによる燃料噴射が行われている状態で高圧燃料系170内の燃料圧力が第1の所定圧以上となったときには、高圧燃料系170内の燃料圧力が低下し始めるまで筒内噴射用インジェクタ17の通電時間を徐々に増大させる燃圧低下処理を実行する。 (もっと読む)


【課題】低温時のエンジンフリクションが高い場合における吸入空気量の切り替え制御において、エンジン回転数の目標アイドル回転数への収束時間を短縮させながら、エンジン回転数の変動を起こすことのないエンジン制御装置を提供する。
【解決手段】エンジン制御装置(100)は、エンジン回転数がアイドル目標回転数に達するまでには第2の吸入空気量(ITWS)によるフィードバック制御を行い、前記目標アイドル回転数を越えたときに、所定時間(TP)、予め設定された第2の吸入空気量(ITWS)よりも小さい吸入空気量になるように前記吸入空気量を固定制御させ、その後、第1の吸入空気量(ITWA)によるフィードバック制御を行うECU(122)を備える。 (もっと読む)


【課題】燃料噴射制御システムにおいて、燃料圧力信号を入力する電子制御装置側で、その燃料圧力信号の信号伝達経路における信号伝達特性値の基準値からのずれを検出可能にする。
【解決手段】燃料圧力センサ27を有したインジェクタIJnを制御するECU11のマイコン33は、通信線41を介した通信により、インジェクタIJnに、センサ27の出力電圧VS(燃料圧力信号)に代えて、それとは別の既知の電圧を出力させる要求を送信する。すると、インジェクタIJnでは、センサ信号線29へ燃料圧力信号を出力するための出力回路57への入力電圧が、マルチプレクサ55により、上記要求に応じた電圧に切り替わる。そして、マイコン33は、センサ信号線29からの入力電圧に基づいて、インジェクタIJn側の出力回路57及び端子58とセンサ信号線29とからなる信号伝達経路59における信号伝達特性値の基準値からのずれを検出する。 (もっと読む)


【課題】機械圧縮比を変更可能な可変圧縮比機構と吸気弁の閉弁時期を制御可能な可変バルブタイミング機構とを具備する火花点火内燃機関において、機関要求出力の変化に伴って要求吸入空気量が変化したときに、ドライバビリティの悪化を抑制して、機関要求出力の変化の応答性を高める。
【解決手段】機械圧縮比と吸気弁閉弁時期との組合せに対し侵入禁止領域X1,X2を設定して機械圧縮比と吸気弁閉弁時期との組合せを示す動作点が侵入禁止領域内に侵入するのを禁止し、機械圧縮比および吸気弁閉弁時期を目標動作点に向けて変化させるようにした火花点火内燃機関において、燃焼悪化に伴う機関振動が車両振動を増大させない場合には、機械圧縮比と吸気弁閉弁時期との組合せを示す動作点が侵入禁止領域内に侵入するのを禁止しない。 (もっと読む)


【課題】運転者の加速の意図に反したトルクの抑制を抑え、ドライバビリティーの悪化を抑制することのできる車両の制御装置を提供する。
【解決手段】電子制御ユニット2は、イグニッションスイッチ6がオンとされてからの経過時間が既定時間よりも短いことを実行条件として、強いアクセル操作時にエンジントルクを低減するトルク抑制制御を実行することで、上記経過時間が短く、車両が未だ駐車場内を走行していて、運転者が急な加速を意図したアクセル操作を行うことが余りないときに限り、トルク抑制制御を行う一方で、上記経過時間がある程度長くなり、車両が一般道を走行していることが考えられるときには、トルク抑制制御を行わず、運転者の意図に即した車両の加速が許容されるようにした。 (もっと読む)


【課題】駆動源の駆動状態と被駆動状態との切り換わり時のリダクションギアの歯打ちによるショックの発生を的確に抑制することのできる車両の制御装置を提供する。
【解決手段】コントローラー12は、エンジン1の駆動状態と被駆動状態との切り換わりに際して、その切り換わり時に駆動輪11側、エンジン1側からリダクションギア9にそれぞれ伝達されるトルクを一致させるために必要なエンジン1の発生トルクを推定し、その切り換わり時のエンジン1の発生トルクをその推定した発生トルクに一致させるフラットトルク作り込み制御を実施する。 (もっと読む)


【課題】高圧ポンプの非駆動時に高圧燃料通路が低圧燃料通路と連通されて高圧燃料通路における燃料圧力が低下しているときに高圧燃料通路内の燃料圧力を精度良く求めることのできる内燃機関の制御装置及び制御方法を提供する。
【解決手段】内燃機関は、低圧燃料通路から導入される燃料を高圧ポンプにより昇圧するとともに高圧燃料通路を通じて圧送して燃料噴射弁に供給する。また、高圧ポンプの非駆動時には高圧燃料通路と低圧燃料通路とが連通状態とされる。電子制御装置は、高圧センサにより検出される高圧燃料通路内の燃料圧力に基づき燃料噴射制御を行なう。また、低圧燃料通路内の燃料圧力を検出する低圧センサを備えている。そして、高圧ポンプの非駆動時には高圧センサの出力値Vhを低圧センサの出力値Vlに基づき補正して高圧燃料通路内の燃料圧力とする。 (もっと読む)


【課題】 本発明は、車両が損傷を受ける可能性のあるパワーホップ状態を検出し、さらにそのような場合に、パワーホップを軽減するなどの対処をすることを目的とする。
【解決手段】 車両101の前後加速度の現在と前回の信号を含む連続した複数の信号を取得し、連続した信号の周期と振幅を算出し、連続した信号のそれぞれの周期と振幅の組み合わせが第1所定値PH_Map1を上回るか否かを判定し、現在の信号の周期と振幅の組み合わせが、第1所定値PH_Map1よりも大きい第2所定値PH_Map2を上回るか否かを判定し、現在の信号の周期と振幅の組み合わせが第1所定値PH_Map1を上回り、かつ現在の信号の周期と振幅の組み合わせが第2所定値PH_Map2を上回るかどうかに基づいてパワーホップの状態を判断する。 (もっと読む)


【課題】EGR装置を備えたエンジンにおいて、EGRガスによる減速時及び再加速時の失火を防止できるようにする。
【解決手段】筒内流入EGRガス量を推定すると共にエンジン運転状態に基づいて失火限界EGRガス量を算出し、失火限界EGRガス量と筒内流入EGRガス量とを比較して失火が発生するか否かを予測する。そして、失火が発生すると予測したときに、失火回避制御(例えば、燃料噴射量増量制御、点火エネルギ増加制御、気流強化制御、吸入空気量増加制御等)を実行する。その際、筒内流入EGRガス量と失火限界EGRガス量との差に基づいて失火回避に必要な要求失火対策効果量を算出し、その要求失火対策効果量に応じて失火回避制御を実行する際の条件(例えば、失火回避制御の種類、組み合わせ、制御量、実施タイミング等)を変更して、要求失火対策効果量を実現するのに適した条件で失火回避制御を実行する。 (もっと読む)


1 - 20 / 776