説明

Fターム[4D006MA02]の内容

半透膜を用いた分離 (123,001) | 膜の形状、構造 (12,418) | 管状膜 (1,051)

Fターム[4D006MA02]に分類される特許

161 - 180 / 1,051


【課題】無機分離膜を利用した酸の回収方法を提供する。
【解決手段】分離膜として無機多孔質支持体表面にゼオライト膜を有する無機多孔質支持体−ゼオライト膜複合体が収納された分離膜モジュールに酸−水混合物を供給して濃縮された酸を回収するに当り、SiO/Alモル比が5以上であるゼオライトを含むゼオライト膜を使用する。 (もっと読む)


【課題】ゼオライト膜を利用したアルコールの回収方法であって、アルコール濃度が85重量%以下の含水アルコールを処理対象とし、しかも、1kg/(m・h)以上の透過流束で行うことが出来るアルコールの回収方法を提供する。
【解決手段】分離膜として無機多孔質支持体表面にゼオライト結晶層から成る膜を有する無機多孔質支持体‐ゼオライト膜複合体が収納された分離膜モジュールにアルコール−水混合物(但しアルコール濃度が85重量%以下)を供給して濃縮されたアルコールを回収するに当り、SiO/Alモル比が5以上であるゼオライトを含むゼオライト膜を使用する。 (もっと読む)


【課題】多孔質セラミックス基材を同一の組成のままその多孔質セラミックス基材の表面ゼータ電位を変化させる多孔質セラミックス基材の製造方法を提供する。
【解決手段】多孔質セラミックス基材A、B、Cを焼成するに際して、その焼成の温度設定を変化させることによってその多孔質セラミックス基材A、B、Cの表面ゼータ電位ζを同一の組成のまま変化させる焼成工程(熱処理工程)P4を含むため、焼成工程P4において焼成の温度設定を変化させるだけで多孔質セラミックス基材A、B、Cの組成を同一のままにその多孔質セラミックス基材A、B、Cの表面ゼータ電位ζを変化させられる。 (もっと読む)


【課題】無機材料分離膜による分離、濃縮において、実用上十分な処理量と分離性能を両立する多孔質支持体−ゼオライト膜複合体、該ゼオライト膜複合体を用いた分離、濃縮方法を提供する。
【解決手段】多孔質支持体上にゼオライト膜を形成してなる多孔質支持体―ゼオライト膜複合体であって、該多孔質支持体の平均厚さが0.1mm以上7mm以下であり、かつ水銀圧入法による細孔分布測定により求められ、下記式(1):
(D−D95)/D50 (1)
(式中、D、D50およびD95は、それぞれ、大きい細孔から積算した細孔容積の合計量が、全細孔容積の5%になるときの細孔径、全細孔容積の50%になるときの細孔径および全細孔容積の95%になるときの細孔径を示す。)
により算出される、支持体の細孔分布を表す指標が40以下であることを特徴とする多孔質支持体−ゼオライト膜複合体。 (もっと読む)


【課題】耐酸性に優れて長時間の連続運転が可能であり、しかも、反応生成物中の水分含量が高くなっても性能が低下することがないため広範囲の反応条件を採用することが可能である、メンブレンリアクターを提供する。
【解決手段】反応器と当該反応器内で生成した成分を選択的に反応器から分離する分離体とを備えたメンブレンリアクターであり、分離体が、無機多孔質支持体表面にゼオライト膜を有する無機多孔質支持体−ゼオライト膜複合体からなり、ゼオライト膜として、複数種類のゼオライト結晶を含む層を有し、且つ、水10重量%とイソプロピルアルコール90重量%の混合液を該混合液の液温75℃、大気圧条件下で浸透気化分離したとき、測定開始から45分後における透過流束Qが1kg/(m・時間)以上で、分離係数αが500以上であるゼオライト膜を用いることを特徴とする、メンブレンリアクター。 (もっと読む)


【課題】本発明の目的は、脱水装置に用いられる膜容器において被処理流体の流速が速くなり、十分な水の分離性能を得ることが可能な膜容器を提供することにある。
【解決手段】本発明は、脱水装置1に用いられる膜容器6である。本発明の膜容器6は、被処理流体が流入する流体入口14と、被処理流体が流出する流体出口16とを有するケーシング10と、被処理流体の流れ方向に沿って並列に配置された複数の流路11を有する膜容器本体9とを備え、複数の流路11は、流体入口14に接続された最上流部分11Aと、流体出口16に接続された最下流部分11Cとを備え、最上流部分11Aと最下流部分11Cとの間には、被処理流体の流れ方向を逆向きに折り返すための折返部15,17が設けられ、流体入口14に流入した被処理流体が、最上流部分11Aを流れて折返部15,17を経由して最下流部分11Cまで流れるようになっている。 (もっと読む)


【課題】ファウリング等の問題を改善したポリフッ化ビニリデン多孔質分離膜を、有機溶剤を用いないで、簡易な操作で、環境的にも安心、安全に製造することが可能な方法を提供すること。
【構成】本発明の製造方法は、MPCとBMAとの共重合体を溶媒に溶解した溶液に、ポリフッ化ビニリデン多孔質膜を接触させて、該多孔質膜表面を改質する、多孔質分離膜の製造方法であって、前記共重合体におけるMPC構成単位と、BMA構成単位のモル比が、10〜50:90〜50であり、且つ該共重合体を溶解する溶媒として、水を用いることを特徴とし、得られる分離膜は、逆浸透膜、限外濾過膜、精密濾過膜、透析膜、イオン交換膜等に利用可能である。 (もっと読む)


【課題】本発明の目的は、水分離膜ユニットに不具合が生じた場合でも安定して運転することができ、被処理流体を所定の濃度まで確実に脱水することが可能な脱水装置を提供することにある。
【解決手段】本発明は、被処理流体から水を分離する脱水装置1であって、水を分離する前の被処理流体を貯留する第1のタンク2と、水を分離した後の被処理流体が流入する第2のタンク3と、被処理流体から水を分離するための分離膜を有し、第1のタンク2と第2のタンク3との間において被処理流体の流れ方向に沿って並列に配設された複数の膜容器ユニット101,・・・,110とを備え、被処理流体が、第1のタンク2と第2のタンク3との間を往復するように構成され、被処理流体が、複数の膜容器ユニット101,・・・,110を複数回通過するようになっている。 (もっと読む)


【課題】 ゼオライト膜の厚みを分離に必要な最小限に抑えることができ、膜透過物(被分離物質)の物質移動抵抗が減少するために、膜性能(膜透過速度)が向上できるゼオライト分離膜の製造方法を提供する。
【解決手段】 アルミナ等の多孔質管よりなる支持体の表面に多孔質中間層を設け、この多孔質中間層の表面に粒子状ゼオライト結晶を担持させた後、水熱反応によりゼオライト膜を形成するゼオライト分離膜の製造方法であって、支持体表面に設けられた多孔質中間層が、ZrO、SiO、TiO、およびSnOのうちの少なくとも1つの金属酸化物により構成され、該多孔質中間層表面に粒子状ゼオライト結晶を担持させる際、粒子状ゼオライト結晶を溶媒に分散させた溶液中の粒子状ゼオライト結晶の平均粒子径ρzと、多孔質中間層の平均細孔径ρsとの比(ρz/ρs)が、0.05〜20、好ましくは0.1〜10であり、多孔質中間層の厚みが3〜300μm、好ましくは10〜100μmであることを特徴とする。 (もっと読む)


【課題】T型ゼオライト膜に比し、更に耐酸性に優れて長時間の連続運転が可能であり、しかも、反応生成物中の水分含量が高くなっても性能が低下しないため広範囲の反応条件を採用することが可能である、メンブレンリアクターを提供する。
【解決手段】反応器と当該反応器内で生成した成分を選択的に反応器から分離する分離膜とを備えて成るメンブレンリアクターであって、分離膜として、無機多孔質支持体表面にゼオライト膜を有し且つゼオライトのSiO/Alモル比が10以上である無機多孔質支持体−ゼオライト膜複合体を使用して成るメンブレンリアクター。 (もっと読む)


【課題】基材或いは濾過膜の熱膨張係数よりもシール材の熱膨張係数を大きくしても、セラミックス分離膜の製造時にシール材へのクラックの発生が防止されるセラミックス分離膜を提供する。
【解決手段】シール材16と基材12および濾過膜14とは、異なる材質により構成されており、シール材16の熱膨張係数K2と基材12の熱膨張係数K1との差(K2−K1)およびシール材16の熱膨張係数K2と濾過膜14の熱膨張係数K3との差(K2−K3)とシール材16の厚みTとが上記式(1)および式(3)或いは上記式(2)および式(4)の範囲内となるため、基材12の熱膨張係数K1および濾過膜14の熱膨張係数K3よりもシール材16の熱膨張係数K2を大きくしてもそのセラミックス分離膜10の製造時にシール材16へのクラックの発生が防止される。 (もっと読む)


【課題】無機材料分離膜による分離、濃縮において、実用上十分な処理量と分離性能を両立する、欠陥のない緻密なゼオライト膜を有する多孔質支持体−ゼオライト膜複合体の製造方法などを提供する。
【解決手段】多孔質支持体上に、水熱合成でゼオライト膜を形成して多孔質支持体―ゼオライト膜複合体を製造する方法であって、水熱合成が、下記式(1):
(D90−D10)/D50 (1)
[式(1)中、D90、D10およびD50は、それぞれ、粒度分布測定により得られた累積分布図(体積基準、粒子径の小さいものから積算)で、90%の高さを与える直径、10%の高さを与える直径および50%の高さを与える直径(メジアン径)を示す。]
で表される値が2.2以下の粒度分布をもつ種結晶の存在下で行われる製造方法。 (もっと読む)


【課題】分離膜を袋状に形成した場合にも、その分離膜の有効面積を大きくすることができる袋状分離膜の製造方法および袋状分離膜を提供する。
【解決手段】基材の端部を重ねて接合することにより形成される、一端側が開放された袋状分離膜の製造方法において、基材の接合する端部を重ねて熱溶着する工程と、熱溶着した後に基材の表面を分離膜素材によってコーティングして表皮層を形成する工程と、を備える。 (もっと読む)


【課題】無機材料分離膜による分離、濃縮において、実用上十分な処理量と分離性能を両立する多孔質支持体−ゼオライト膜複合体の再生方法を提供する。
【解決手段】SiO/Alモル比が5以上のゼオライトを含むゼオライト膜が、多孔質支持体の表面に形成されてなる多孔質支持体−ゼオライト膜複合体に、有機物を含む気体または液体の混合物を接触させて、該混合物のうち透過性の高い物質を透過させ後に、該ゼオライト膜複合体を水に浸漬することよりゼオライト膜複合体を再生する。 (もっと読む)


【課題】収納容器との接続部の歪みを低減させるとともにゼオライト膜エレメントの歩留まりを向上させること。
【解決手段】膜エレメント1は、外周面にゼオライト膜が備えられたゼオライト膜管2と、この膜管2の一方の端部を封止する熱収縮性樹脂からなる封止部3と、ゼオライト膜管2とこれを収納するケーシング11とを接続しかつ当該膜管2の他方の端部を支持する熱収縮性樹脂からなる接続部4とを備える。接続部4は、ゼオライト膜管2の他方の端部が挿入される外管部と、この外管部と同軸に当該外管部内に具備されかつゼオライト膜管2内の膜透過物質を流通させると共に当該外管部とでゼオライト膜管2の他方の端部を支持する内管部とから成る。 (もっと読む)


【課題】気密性の高い酸素分離膜を備える酸素分離膜エレメント及びその製造方法を提供する。
【解決手段】
本発明によって提供される酸素分離膜エレメントの製造方法は、一般式:Ln1−xAeCo1−yで示されるペロブスカイト型酸化物を含む多孔質支持体用原料粉末であって、平均粒径10μm以上の原料粉末を所定形状の成形体に成形する工程と、該成形体の表面部の少なくとも一部に、一般式:Ln1−xAeCo1−yで示されるペロブスカイト型酸化物から実質的に構成される酸素分離膜を形成するための前駆体を付与する工程と、成形体及び前駆体を1150℃〜1250℃の温度域にて24時間以上同時焼成することにより、多孔質支持体と該多孔質支持体の表面部に設けられた酸素分離膜とを同時に形成する工程と、を包含する。 (もっと読む)


【課題】ゼオライト膜を長寿命化するようにした膜分離用前処理装置及びそれを用いた膜分離方法を提供する。
【解決手段】液体混合物又は気体混合物からなる被処理体をゼオライト膜に接触させて分離する膜分離方法であって、前記被処理体をゼオライト膜に接触させる前に、前記ゼオライト膜を有する膜分離装置11〜16から独立した前処理装置3内に充填したゼオライト粒子と前記被処理体とを接触させるようにしたことを特徴とする。 (もっと読む)


【課題】セラミックやガラスのような金属部材より割れ易い相手部材を破損しないような締付力で締め付けても、高いシール性を実現できるガスシール複合体及び該ガスシール複合体を備えた装置を提供すること。
【解決手段】ガスシール複合体7は、環状の一対のガスケット(先端側ガスケット43、基端側ガスケット45)とその両ガスケット43、45の間に挟まれた環状の金属箔部材47とから構成されている。両ガスケット43、45は、膨張黒鉛からなる耐熱性のガスケットである。両ガスケット43、45は、前記空間41内にて、押圧金具9の押圧によって圧縮された状態、従って周囲を押圧した状態に保持されているので、この空間41における原料ガスの漏出を防止している。 (もっと読む)


【課題】原水に対する浄化性能が高く且つ高い浄化性能を長期間維持することのできる浄水器を提供する。
【解決手段】原水入口76と浄水出口78とを備えたケース62の内部に浄化材を収容し、原水入口76から流入した原水を浄化材に通して浄化し、浄水を浄水出口78から流出させる浄水器40において、浄化材として、原水入口76から流入した原水の流れの上流側から下流側に第1の活性炭層88,中空糸膜フィルタ130,第2の活性炭層132の順序で配置し、原水を第1の活性炭層88,中空糸膜フィルタ130,第2の活性炭層132の順に通して浄化を行うようにする。 (もっと読む)


【課題】水素透過膜の水素透過速度を精度にて予測することができる方法と、この方法を採用した水素製造装置及びその運転方法を提供する。
【解決手段】1次室に原料ガスを供給し、水素分離膜を透過した水素を2次室から取り出す水素分離プロセスにおける該膜の水素透過速度を推定する方法であって、1次室の水素分圧P、2次室の水素分圧P及び温度Tから求まる1次室と2次室との水素の化学ポテンシャル差Δμと、水素透過速度Jとの関係を求めておき、1次室の水素分圧をP’とし、2次室の水素分圧をP’としたときの水素透過速度をこの関係から求める。この方法で推定されるJ値との積J・Aが目標水素取出量となるように、1次室及び2次室のガス圧及び温度を制御する。 (もっと読む)


161 - 180 / 1,051