説明

Fターム[4G018AC12]の内容

磁性セラミックス (3,358) | 製造方法 (934) | 焼結、熱処理方法 (391)

Fターム[4G018AC12]の下位に属するFターム

焼結、熱処理雰囲気 (143)
焼結、熱処理温度 (222)
1段熱間プレス処理による焼結
磁場中での加熱
補助具(匣鉢、詰め粉等)の使用 (3)

Fターム[4G018AC12]に分類される特許

1 - 20 / 23


【課題】連続的に励磁するような環境にあっても、コア温度が上昇するのを十分に抑制でき且つ飽和磁束密度が十分に高いフェライトコアを提供すること。
【解決手段】本発明に係るフェライトコアは、それぞれ酸化物に換算したとき、51.0〜54.0モル%のFe、34.5〜40.0モル%のMnO、及び、9.0〜11.5モル%のZnOからなる主成分と、所定量のCo、Ti、Si及びCaを含む副成分とを含有しており、Feの含有率をAモル%とし、ZnOの含有率をBモル%としたとき、比率A/Bの値が4.5〜6.0であることを特徴とする。 (もっと読む)


【課題】 室温付近かつ弱磁場の条件下で電気磁気効果を有する電気磁気効果材料及びその製造方法を提供する。
【解決手段】 本発明の電気磁気効果材料は、一般式(Sr1-αBaα3(Co1-ββ2Fe2441+δ(但し、式中、BはNi、Zn、Mn、Mg及びCuからなる群から選ばれる一種以上の元素であり、α、β、δはそれぞれ0≦α≦0.3、0≦β≦0.3、−1≦δ≦1である。)で示される酸化物セラミックスを主要成分として構成され、250〜350Kの温度範囲かつ0.05テスラ以下の磁場範囲において電気磁気効果を有する。本発明の電気磁気効果材料の製造方法は、焼成を酸素又は空気雰囲気中で1100〜1300℃の温度範囲で行い、焼成後、酸素雰囲気中で温度を2〜100時間で室温まで冷却する工程を含む。 (もっと読む)


【課題】軽量化を達成すると同時に硬度及び高比強度であり、磁性が付与された新規な複合焼結固化された磁性体の提供。
【解決手段】粉状の純マグネシウム(90〜50重量%)および粉状のNi−Cu−Znフェライト(10〜50重量%)(合計100重量%)を、不活性気体の存在下、ステアリン酸と供にメカニカルアロイングし、前記純マグネシウム中に粉状の純マグネシウムが分散された磁性体混合物を得た後、純マグネシウムおよびフェライト混合物を放電プラズマ焼結することにより得られることを特徴とするマグネシウムおよびNi−Cu−Znフェライト焼結固化磁性体。 (もっと読む)


【課題】高周波領域においても使用可能な高磁束密度・高透磁率および高電気抵抗を有した磁性ナノコンポジット、及びその製造方法を提供する。
【解決手段】本製法は、Mg(MnFe1−x(0≦x≦0.4)となる量の、MgO微粒子、Fe微粒子及びMnO微粒子を秤量し、これら微粒子をFe‐Ni合金粉末と混合して合金粉末の表面をコーティングし、コンポジット粉末を製造する工程Aと、該コンポジット粉末から得られた仮成形体に超高静水圧プレスにて圧力を加え、高密度成形体を製造する加圧工程Bと、前記工程Bで得られた成形体をパルス通電加圧焼結して、金属酸化物混合物をフェライト相とし、相対密度92%以上の焼結体を製造するパルス通電加圧焼結工程Cと、前記工程Cで得られた焼結体を熱間静水圧プレスで処理し、焼結体の相対密度94%以上とする熱間静水圧プレス工程Dを含む。 (もっと読む)


【課題】Fe、CoおよびMnの酸化物、水酸化物、炭酸塩または硝酸塩を原料として、焼結磁石を製造する方法を提供する。
【解決手段】Fe、CoおよびMnの酸化物、水酸化物、炭酸塩または硝酸塩を原料とし、スピノーダル分解を利用して微細な角柱状の磁性相と角柱状の非磁性相とが交互に配列された構造を有する焼結磁石を得ることにより、上記の課題を解決する。 (もっと読む)


【課題】金属ワイヤを内包するセラミック焼成体の製造において、クラックの発生しない製造方法を提供する。
【解決手段】金属ワイヤ(コイル11)を型(金型21)内に配置し、その型内に「熱ゲル化特性又は熱硬化性を有するセラミックスラリー」を注ぐ。次に、セラミックスラリーを硬化及び乾燥させ焼成前セラミック成形体を作成し、そのセラミック成形体を焼成する。この焼成工程においては、先ず、セラミック成形体の脱脂を行い、その後、セラミック成形体の温度を「金属ワイヤが軟化し且つセラミック成形体が焼成する第2温度」まで第2昇温速度にて上昇させる。第2昇温速度は、セラミック成形体の温度が第2温度にまで上昇した時点において「セラミック成形体の収縮率が所定閾値収縮率以下の収縮率となる」ように、即ち、金属ワイヤの軟化がセラミック成形体の実質的な焼成開始よりも先行するように、設定されている。 (もっと読む)


【課題】低温焼成が可能であると共に、高い比抵抗及び高いQ値を兼ね備えたフェライト組成物を提供する。
【解決手段】酸化鉄、酸化亜鉛、酸化マンガン及び酸化ニッケルを含有するフェライト組成物であって、酸化鉄、酸化亜鉛、酸化マンガン、酸化ニッケル及び酸化銅の含有量の合計に対し、酸化鉄の含有量がFe換算で45.0〜50.0mol%、酸化亜鉛の含有量がZnO換算で15.5〜30.0mol%、酸化マンガンの含有量がMn換算で0.1〜4.0mol%、酸化ニッケルが含有量はNiO換算で14.0〜39.4mol%、酸化銅の含有量がCuO換算で2.0mol%以下、及び酸化ホウ素の含有量がB換算で0.1〜2.0質量%であるフェライト組成物。 (もっと読む)


【課題】120〜140℃の温度範囲に鉄損の極小値が存在し、かつ、130℃における飽和磁束密度が高く、鉄損の絶対値が小さいフェライトを提供する。
【解決手段】Fe:52.5〜54.0mol%、ZnO:5.0〜10.0mol%、NiO:0.01〜0.16mol%、残部がMnOおよび不可避的不純物からなる基本成分組成を有し、当該フェライトに対して、添加成分としてSiO:50〜500massppm、CaO:200〜2000massppm、Nb:50〜500massppmおよびBeO:10〜100massppmを含有し、130℃、磁化力1200A/mで測定したときの飽和磁束密度が400mT以上であり、130℃における鉄損が400kW/m以下であるMn−Zn−Ni系フェライト。 (もっと読む)


【課題】バンドギャップ等の電気特性を任意の値に制御できる酸化物及び電気特性を任意の値に制御する方法を提供する。
【解決手段】下記式(1)で表され、式(1)中のRの一部が正二価以下の元素又は正四価以上の元素により固溶置換されている酸化物。
(RM(RMO (1)
(式中、Rは、Sc、Y、Dy、Lu、Er、Yb、Tm、Ho及びInからなる群より選択される1又は2以上の元素であり、Mは、Mn、Fe、Co、Ni、Cu、Zn、Al、Mg及びGaからなる群より選択される1又は2以上の元素であり、mは1又は2であり、nは0以上の整数である。) (もっと読む)


【課題】バリスタと一体焼成した場合にバリスタ特性を良好に維持することができ、高い磁気共鳴周波数と高い初透磁率とを両立可能なフェライトを提供すること。
【解決手段】本発明のフェライトは、主成分として酸化鉄、酸化ニッケル、酸化亜鉛及び酸化マンガンを含有するフェライトであって、主成分は、酸化鉄をFe換算で45〜49.5mol%、酸化ニッケルをNiO換算で20〜40mol%、酸化亜鉛をZnO換算で14〜30mol%、及び酸化マンガンをMn換算で0.1〜2mol%含有し、主成分は任意に酸化銅を含有し、主成分における酸化銅の含有量がCuO換算で2mol%以下であり、主成分全体に対して、酸化ビスマスをBi換算で3〜10質量%含有する。 (もっと読む)


【課題】 広い周波数帯域で、高い初透磁率が得られるMnZnフェライト及びその製造方法を提供すること。
【解決手段】 MnZnフェライトに副成分として添加するSiO2を0以上0.005wt%以下、CaOを0.02wt%以上0.2wt%以下、MoO3を0.05wt%以上0.5wt%以下、Bi23を0.005wt%以上0.1wt%以下、B23を0.005wt%以上0.1wt%以下とし、MnZnフェライトの焼成工程において、500℃〜1300℃の昇温部分での酸素濃度が21vol%以上100vol%以下、且つ昇温速度が200℃/hr以上400℃/hr以下とする。 (もっと読む)


【課題】 高い初透磁率と高い比抵抗を同時に実現し、高インピーダンス特性を有する高透磁率MnZnフェライトの製造方法を提供すること。
【解決手段】 高透磁率MnZnフェライトの焼成工程において、500℃から保持温度までの昇温過程における昇温速度を350℃/hr以上、前記昇温過程における酸素濃度を体積百万分率で10000ppm以下とし、保持温度での酸素濃度を2段階とし、1段目の保持酸素濃度を20vol%以上、2段目の保持酸素濃度を5vol%以上30vol%以下、1段目の保持時間を2時間以上20時間以下、2段目の保持時間を1時間以上4時間以下とし、冷却過程の酸素濃度が、酸素濃度PO2と温度Tの関数であるlog(PO2)=−A/T+Bで規定され、前記関数におけるAは、8000以上18000以下とすることにより、高い初透磁率と高い比抵抗を同時に実現し、高インピーダンス特性を有する高透磁率MnZnフェライトの製造方法が得られる。 (もっと読む)


【課題】高い飽和磁束密度を保持しながら低損失を兼ね備えたトランス用の低損失フェライト材料及びその製造方法を提供する。
【解決手段】Fe 60〜67mol%、ZnO 8〜18mol%、MnO 18〜28mol%を主成分とし、SiO 20〜200ppm、CaO 200〜2000ppmが添加されてなる低損失フェライト材料であって、密度が4.90×10kg/m以上、飽和磁束密度が550mT以上、100kHz,200mTにおける単位体積あたりの磁心損失が25℃で2000kW/m以下、100℃で1800kW/m以下であることを特徴とする。 (もっと読む)


【課題】 電源装置用の磁心材料としてコアロスを小さくした低損失酸化物磁性材料の製造方法を提供すること。
【解決手段】 主成分組成として、Fe23の換算で52.5〜53.5mol%、MnOの換算で35.0〜40.0mol%、及び残部がZnOであり、副成分として、0.005〜0.05wt%のSiO2、0.01〜0.1wt%のCaO及び0.01〜0.1wt%のNb25を含有するMn−Zn系フェライトからなる低損失酸化物磁性材料の製造方法において、焼結工程の保持過程の保持温度から1000℃までの冷却過程における温度の冷却スピードを100〜400℃/hrとすると共に、前記冷却過程での酸素濃度P(%)が、aを傾きとし、Tを絶対温度(K)とし、bを保持過程での保持温度及び保持酸素濃度並びに前記傾きaによって一義的に決定される定数としたとき、Log(P)=a/T+bの式で規定され、傾きaの範囲を−6000〜−18000とする。 (もっと読む)


【課題】飽和磁束密度Bsの高いMnZnフェライトであって、かつ、コアロスの少ないMnZnフェライトを提供することにある。
【解決手段】酸化鉄がFe23換算で55.1〜60.0モル%、酸化マンガンがMnO換算で30.0〜39.0モル%、酸化ニッケルがNiO換算で1.0〜5.0モル%、酸化亜鉛がZnO換算で残部含有されてなるMnZnフェライトの主成分に対して、添加成分として酸化ケイ素、酸化カルシウム、および酸化ニオブを含有してなる方法であって、前記添加成分の添加物原料は、いずれも、添加時の添加物形態における比表面積が10.0m2/g以上の物性を備えてなる粒状物であるように構成される。 (もっと読む)


【課題】500kHz程度以上の高周波領域において、損失を抑えた高特性のMnフェライトを提供することを目的とする。
【解決手段】焼成後に、Mnフェライトの損失を低減するための熱処理を行うのが好ましく、その熱処理温度は200〜350℃、熱処理継続時間は0.3〜12hrとするのが好ましい。また、熱処理は、降温時に降温速度を抑えることでも同等の効果を狙うことができる。この場合、降温速度を45℃/hr以下とし、降温速度を45℃/hr以下に抑えてMnZnフェライトを徐冷するのが良い。 (もっと読む)


【課題】 本発明は、高い透磁率を有するNi−Zn−Cu系フェライト材料に関し、詳しくは900℃以下の低い温度で焼結することができ、しかも高透磁率のフェライト焼結体を得ることができるフェライト粉体、グリーンシート並びに焼結体に関する。
【解決手段】 Ni−Zn−Cu系フェライト粉末とZn−B系ガラス粉末100〜1000ppmとからなるフェライト粉体であって、該フェライト粉体の比表面積が5.0〜10.0m/g、圧縮密度が3.20×10kg/m以上であることを特徴とするフェライト粉体、該フェライト粉体と結合材料とを用いてシート状に成膜してなるグリーンシート、及び前記フェライト粉体、前記グリーンシートの積層体を成型した後、焼結することにより得ることができる。 (もっと読む)


【課題】生産性、及び、信頼性を向上し、セラミック粉末成形体の割れ、欠け、さらに、一面同士の付着を防止するとともに、雰囲気のばらつき、及び、有機物の抜けに起因する不良発生を防止することができるセラミック粉末成形体の焼成方法を提供する。
【解決手段】平板状のセラミック粉末成形体10の複数を、一面101を上にして支持体上に整列し、整列して得られたセラミック粉末成形体10の列11の上に、別のセラミック粉末成形体列12を、整列方向L2にずらして積み重ね、次に、積み重ねられた複数のセラミック粉末成形体列11−12を焼成する工程を含むセラミック粉末成形体の焼成方法。 (もっと読む)


【課題】焼成時における成形体の割れ発生を低減することのできるフェライト磁石の製造方法を提供することを目的とする。
【解決手段】焼成炉20で焼成を行うに先立ち、乾燥炉10において成形体100を乾燥させ、成形体100に含まれる水分量を、7wt%以下、より好ましくは4wt%以下、特に好ましくは1wt%以下となるように調整し、焼成時の温度上昇に際し、成形体100に含まれる水分の蒸発量を抑える。また、焼成炉20において、成形体100を焼成するに際し、分散剤が熱分解する温度を含む150℃から300℃までの昇温を、30分以上、より好ましくは45分以上かけて行うことにより、分散剤の熱分解が急激に進むのを抑制し、これによるガス発生を緩やかなものとする。 (もっと読む)


【課題】 小型でかつ脚部を有するコアの焼成時の変形を抑制することのできるMn−Zn系フェライトコアの製造方法を提供する。
【解決手段】 所定のコア形状を有するMn−Zn系フェライト成形体を所定温度まで昇温する昇温過程と、昇温過程に続く保持過程と、保持過程に続く降温過程と、を備え、昇温過程において、焼成雰囲気における酸素分圧(PO2)に基づいて定められる昇温速度で昇温することを特徴とする。昇温速度は、焼成雰囲気におけるPO2と、当該PO2について予め求められている当該コア形状の変形量に基づいて定めることが好ましい。 (もっと読む)


1 - 20 / 23