説明

Fターム[4G042DB22]の内容

Fターム[4G042DB22]に分類される特許

81 - 100 / 136


【課題】金属微粒子、酸化物微粒子等のナノ微粒子がロッド状に形成されるナノロッドを、液相還元により非常に簡便に生成することが可能なナノロッドの製造方法を提供する。
【解決手段】溶性高分子と酸素とを含む水溶液中で、金属イオンの還元を行うことにより、アスペクト比が1.0より大きくかつ50.0より小さい範囲であり、かつ、短軸の平均半径が1nm〜20nmの範囲である金属または金属酸化物よりなるナノロッドを生成する。また、ナノ構造体テンプレート等を用意することなく、非常に簡便な方法により、ナノロッドを生成できる。 (もっと読む)


本発明は、金属酸化物で被覆される金属コアを含む少なくとも1つのナノワイヤを含む一次元複合構造体、又はこのようなナノワイヤから構築される少なくとも1つの複合構造体に関する。本発明はさらに、これらの構造体との金属−有機結合体を分解することができる、触媒を用いないMOCVD法に関する。複合構造体はナノ電子、光学又は磁気部品又は材料に好適である。 (もっと読む)


【課題】金属ナノ粒子の製造方法を提供する。
【解決手段】本発明は、キャピング分子(capping molecule)、金属触媒、還元剤及び有機溶媒を含む混合液を準備する段階と、上記混合液に金属前駆体を投入して所定の温度に昇温して撹拌する段階と、及び上記混合液の温度を低めてナノ粒子を得る段階と、を含む金属ナノ粒子の製造方法に関する。本発明によれば、金属触媒を用いて水系で単一金属、金属合金または金属酸化物などのナノ粒子を高濃度に合成することができる。 (もっと読む)


【課題】一般式ABO3で表されるペロブスカイト型複合酸化物の、ペロブスカイト相に
結晶化していない前駆体を高効率かつ安価に調製する方法、ならびにこの前駆体を用いた結晶化した貴金属固溶ペロブスカイト型複合酸化物の製造方法を提供する。
【解決手段】Aサイトを占める元素それぞれの、酸化物、水酸化物、酸化水酸化物および金属単体の少なくとも1種を含有する原料と、Bサイトを占める元素それぞれの、酸化物、水酸化物、酸化水酸化物および金属単体の少なくとも1種を含有する原料とを、粉砕媒液中で混合粉砕処理することにより上記前駆体が得られる。また、この前駆体と貴金属塩とを溶媒中で攪拌混合し、生成物を500〜1300℃で熱処理することにより、上記貴金属固溶ペロブスカイト型複合酸化物が得られる。 (もっと読む)


本発明は、a)キャリア流体を用いて出発化合物を反応チャンバに導入する工程と、b)処理ゾーン中の前記出発化合物を、240〜700℃の温度で脈動流により熱処理する工程と、c)ナノ結晶金属酸化物粒子を形成する工程と、d)前記工程b)およびc)で得た前記ナノ結晶金属酸化物粒子を反応器から取り出す工程と、を含み、前記出発化合物は溶液、スラリー、懸濁液、または固体凝集物の形態で前記反応チャンバに導入されることを特徴とする、ナノ結晶金属酸化物粒子の製造方法に関する。さらに、本化合物は、本発明に係る製造方法により得られうる触媒材料、特に、一酸化炭素および水素からのメタノール製造に使用される触媒材料に関する。 (もっと読む)


出発材料を蒸発および酸化させ、液滴の形態の金属溶融物および1つあるいはそれより多くの燃焼ガスを反応器の蒸発ゾーンに供給し、ここで金属溶融物を非酸化条件の下で完全に蒸発させ、続いて、蒸発ゾーンから流出した混合物をこの反応器の酸化ゾーンで、酸素含有率が少なくとも金属および燃焼ガスを完全に酸化するのに充分な供給された酸素含有ガス流と反応させる、金属酸化物粉末の製造方法。 (もっと読む)


酸化可能な出発材料を反応器の蒸発ゾーンで蒸発し、且つこの反応器の酸化ゾーンで蒸気の状態で酸化し、反応の後、反応混合物を冷却し、そして粉末状の固体をガス状の物質から取り出し、ここで少なくとも1つの粉末状の金属を1つあるいはそれより多くの燃焼ガスと共に、蒸発ゾーンに供給し、前記金属を蒸着ゾーン内において非酸化条件で完全に蒸発させ、酸素含有ガスおよび少なくとも1つの金属化合物を別々あるいは一緒に酸化ゾーンで蒸発ゾーンから流出した混合物に供給し、酸素含有ガスの酸素含有率は少なくとも前記金属、金属化合物、および燃焼ガスを完全に酸化するのに充分である、混合金属酸化物粉末の製造方法。 (もっと読む)


【課題】新規な無機物粒子の製造方法を提供すること
【解決手段】金属化合物及び分解性添加剤を含む原料溶液を加熱し、熱分解及び一次焼成を行う工程を有する無機物粒子の製造方法とする。分解性添加剤は、限定されるわけではないが金属化合物よりも低い熱分解温度を有することが好ましい。また分解性添加剤は、限定されるわけではないが塩化アンモニウム、酢酸アンモニウム、ギ酸アンモニウム、硝酸アンモニウム、炭酸アンモニウム、硫酸アンモニウム、尿素の少なくとも何れかを含むことが好ましい。更に、限定されるわけではないが、熱分解及び一次焼成は400℃以上1800℃以下の範囲内で行うことが好ましい。 (もっと読む)


【課題】複雑で大掛かりな設備を用いずに、比誘電率が高く、膜厚が任意に制御され得る複合酸化物膜の製造方法、その複合酸化物膜を基体表面に有する複合体、該複合体を含む誘電材料又は圧電材料、さらにこれら材料を含むコンデンサ又は圧電素子および、これら素子を備えた電子機器を提供する。
【解決手段】第一金属元素を含む基体表面の酸化被膜を除去し、次いで該酸化被膜が除去された基体に、大気圧下または減圧下で、蒸発、昇華及び熱分解のうちの少なくとも一つの手段で気体となる塩基性化合物と、第二金属元素のイオンとを含有する溶液を反応させて、基体表面に、第一金属元素及び第二金属元素を含有する複合酸化物膜を得る。 (もっと読む)


本発明は、抗菌活性を有する陽イオン金属が付随する酸化金属を含むナノ材料に関する。特に、本発明は、式(I)のナノ結晶性化合物に関する:AO−(L−Men+,(I)、ここにおいて、AOは、X=1または2である、酸化金属または酸化メタロイドを意味し;Men+は、n=1または2である、抗菌活性を有する金属イオンを意味し;Lは、有機または有機金属の何れかであり、酸化金属または酸化メタロイドおよび金属イオンMen+に同時に結合できる二官能性分子であり;およびiは、AOナノ粒子に結合するL−Men+基の数を意味する。 (もっと読む)


本発明は、多孔質有機金属フレームワーク材料を、フレームワーク材料の完全な分解温度を上回って加熱することによる製法に関し、その際、前記フレームワーク材料は、少なくとも1つの金属イオンに配位結合した少なくとも二座の有機化合物を含有し、かつ前記金属イオンは、元素の周期系の第2〜4族と第13族から成る金属から選択される。更に本発明は、前記方法により得られる金属酸化物及びその使用に関する。 (もっと読む)


【課題】低温度において、短時間で、結晶性が高い金属酸化物ナノ結晶を得ることができる金属酸化物ナノ結晶の製造方法を提供する。
【解決手段】金属酸化物前駆体を、金属酸化物前駆体に対してモル数で0.5倍以上10倍以下のアミン類の存在下、含酸素有機溶媒を用いたソルボサーマル法に供して、金属酸化物ナノ結晶を得る。 (もっと読む)


【課題】ハニカムフィルタ等の各種基材に対して付着性が高く且つ優れた耐熱性を有しており、更に基材上に形成する被覆の薄膜化も可能な金属酸化物ナノ多孔体の製造方法を提供すること。
【解決手段】アルミナ、ジルコニア、チタニア、酸化鉄、希土類元素酸化物、アルカリ金属酸化物及びアルカリ土類金属酸化物からなる群から選択される前記金属酸化物のうちの少なくとも一種のコロイド粒子を含む、前記2種以上の金属酸化物の原料を含有する原料流体組成物を準備する工程と、前記原料流体組成物を、粒子径変化量(混合後のコロイド粒子の平均粒子径/混合前のコロイド粒子の平均粒子径)が1.3以上となるように混合した後、実質的に共沈させることなく熱処理して、直径が10nm以下のナノ細孔を有しており且つ前記ナノ細孔を構成する壁体において前記金属酸化物が均質に分散する工程と、を含むことを特徴とする金属酸化物ナノ多孔体の製造方法。 (もっと読む)


【課題】本発明は、基材の形態に関わらず、透明性、緻密性、密着性等に優れた金属酸化物膜を得ることができる金属酸化物膜の製造方法を提供することを主目的とするものである。
【解決手段】本発明は、スプレー装置により、金属源として金属塩または金属錯体が溶解した金属酸化物膜形成用溶液を霧化し、霧化された上記金属酸化物膜形成用溶液と金属酸化物膜形成温度以上の温度以上に加熱した基材とを接触させることにより、上記基材上に金属酸化物膜を形成する金属酸化物膜の製造方法であって、上記基材を上記金属酸化物膜が形成される成膜面側から加熱することを特徴とする、金属酸化物膜の製造方法を提供することにより上記課題を解決するものである。 (もっと読む)


【課題】本発明は、筒状基材の外周面に、厚みが均一で、透明性、緻密性、密着性等に優れた金属酸化物膜を得ることができる金属酸化物膜の製造方法を提供することを主目的とするものである。
【解決手段】本発明は、貫通孔を有する筒状の基材を用い、上記基材の外周面を金属酸化物膜形成温度以上に加熱し、さらに上記貫通孔を中心として上記基材を回転させた状態で、上記基材の外周面に金属酸化物膜形成用溶液をスプレー装置で噴霧することにより、上記基材の外周面に金属酸化物膜を形成することを特徴とする金属酸化物膜の製造方法を提供することにより上記課題を解決するものである。 (もっと読む)


【課題】粒子形状の均一な粉体を製造できる粉体製造装置および粉体製造方法を提供する。
【解決手段】ミスト発生手段6によって原料液のミストを生成し、ミストを気流によって搬送し、乾燥装置2によって気流を加熱することでミストを乾燥して原料粉体を生成し、プラズマ加熱装置3のプラズマ発生手段8が形成する超高温のプラズマ空間で原料粉体を熱分解して融合する。 (もっと読む)


金属ナノ粒子、混合金属(合金)ナノ粒子、金属酸化物ナノ粒子、および混合金属酸化物ナノ粒子を狭い粒度分布および高純度で含有する組成物。金属ナノ粒子、混合金属ナノ粒子、金属酸化物ナノ粒子、および混合金属ナノ粒子の製造方法も提供する。
(もっと読む)


【課題】粒子径が十分に小さい金属酸化物微粒子が均一かつ安定的に分散された金属酸化物微粒子分散液およびその製造方法を提供することにある。
【解決手段】平均一次粒径が1〜200nmの範囲にある、マグネシウム、アルミニウム、ケイ素、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ストロンチウム、イットリウム、等から選ばれる少なくとも一種の元素の酸化物あるいは複合酸化物微粒子を有機分散媒中に分散させて得られ、その分散液の金属酸化物微粒子のメジアン粒径(体積基準)が1〜100nm、最大粒径が10〜1000nmの範囲にある金属酸化物微粒子分散液。 (もっと読む)


本発明は、a)少なくとも1種の金属イオンおよびその錯体を含む出発水溶液を少なくとも0.1%w/wの金属成分の濃度で調製する工程;b)50℃よりも高い温度を有する改変用水溶液を調製する工程;c)混合チャンバー中、連続方式で、改変用水溶液を出発水溶液と接触させ、改変された系を形成する工程;d)混合チャンバーから改変された系を押し出し流れ方式で取り出す工程を含む、小さなサイズの金属酸化物粒子を形成する方法であって、i)混合チャンバーにおける滞留時間が約5分未満であり、そしてiii)形成された粒子またはその凝集体が存在し、大部分の形成された粒子が約2nm〜約500nmの大きさであることを特徴とする方法を提供する。 (もっと読む)


1種以上の酸化可能及び/又は加水分解可能な金属化合物を高温帯域内で酸素及び/又は水蒸気の存在で反応させ、反応後に反応混合物を冷却し、粉末状固体をガス状物質から除去する粉末状固体の製造法において、少なくとも1種の金属化合物を高温帯域に固体形で導入し、その際、金属化合物の蒸発温度が高温帯域の温度を下回ることを特徴とする方法。 (もっと読む)


81 - 100 / 136