説明

Fターム[4G048AA04]の内容

重金属無機化合物 (15,216) | 構成元素 (3,341) | 構成元素が特定されたもの (3,280) | 複数金属とO、又は更にHからなるもの (2,177) | Li、Na、K、Rb、Cs、Frを含むももの (805)

Fターム[4G048AA04]に分類される特許

101 - 120 / 805


【課題】放電電流量の増大にともなう放電容量の低下の割合を小さくすることのできる正極活物質、正極、および2次電池、ならびに正極活物質の製造方法を提供する。
【解決手段】2次電池の正極活物質は、導電性物質が付着した亜クロム酸ナトリウムの結晶粒子を含む。導電性物質は、例えば、糖類に属する有機化合物、不揮発性の不飽和炭化水素、ヒドロキシ基を含む高分子化合物等をカーボン源とし、亜クロム酸ナトリウムの結晶粒子の合成とともにこれを炭化処理することにより形成される。 (もっと読む)


【課題】本発明は、高電圧で充電を行ってもサイクル特性、レート特性に優れるリチウムイオン二次電池用の正極活物質およびその製造方法を提供する。
【解決手段】Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物の表面に、下記炭素材料(I)、または下記炭素材料(I)および下記酸化物(II)が被覆している粒子(III)からなることを特徴とするリチウムイオン二次電池用の正極活物質。
炭素材料(I):カーボンナノチューブ、グラフェン、および平均分散粒子径が0.2μm以下のカーボンブラックから選ばれる少なくとも一種の炭素材料。
酸化物(II):Zr、Ti、およびAlから選ばれる少なくとも一種の金属元素の酸化物。 (もっと読む)


【課題】本発明は、放電容量およびサイクル特性に優れ、電池内でのガスの発生を抑制できるリチウムイオン二次電池用の正極活物質の、効率的な製造方法を提供する。
【解決手段】Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物の還元処理および/または酸処理を行い、つぎにNi、Co、およびMnから選ばれる少なくとも一種の遷移金属元素を含みLi元素を含まない化合物からなる正極材前駆体とともに350〜800℃で焼成することを特徴とする、リチウムイオン二次電池用の正極活物質の製造方法とする。 (もっと読む)


【課題】全固体電池等の薄膜電池で使用する薄膜正極を形成するリチウム含有遷移金属酸化物ターゲット及びその製造方法並びにリチウムイオン薄膜二次電池を提供する。
【解決手段】結晶系が六方晶系を示すリチウム含有遷移金属酸化物の焼結体よりなるターゲットであって、相対密度が90%以上、平均結晶粒径が1μm以上50μm以下の焼結体よりなるリチウム含有遷移金属酸化物ターゲット及び結晶系が六方晶系を示すリチウム含有遷移金属酸化物の焼結体よりなるターゲットであって、CuKα線を使用したX線回折による(003)面、(101)面、(104)面の強度比が次の(1)及び(2)の条件を満たすリチウム含有遷移金属酸化物ターゲット。(1)(003)面に対する(101)面のピーク比が0.4以上1.1以下、(2)(104)面に対する(101)面のピーク比が1.0以上。 (もっと読む)


【課題】収率の高い亜クロム酸ナトリウムの製造方法を提供する。
【解決手段】この製造方法では、水の含有率を1000ppm以下にした、酸化クロム(Cr)の粉末と炭酸ナトリウム(NaCO)の粉末との混合物を、不活性ガス雰囲気で、炭酸ナトリウムと酸化クロムとが焼成する焼成温度範囲で(850℃)加熱する。これにより、亜クロム酸ナトリウムを得る。 (もっと読む)


【課題】高い起電力及び十分な電流密度を得ることができる層状金属酸化物を含む電極を備える燃料電池を提供すること。
【解決手段】電極触媒と、第1の層状金属酸化物と、を含み、電極触媒100重量部に対して、第1の層状酸化物が50〜150重量部である、アノード電極と、カーボン材料と、第2の層状金属酸化物と、を含み、カーボン材料100重量部に対して、第2の層状酸化物が150〜250重量部である、カソード電極と、アノード電極とカソード電極との間に配置され、第3の層状金属酸化物を含む固体電解質層と、を備え、第1及び第3の層状金属酸化物は水蒸気処理が施されたものである、燃料電池。 (もっと読む)


【課題】電池の正極に用いた場合に、高容量と優れた熱安定性を両立させることができる非水電解質二次電池用正極活物質および非水電解質二次電池を提供する。
【解決手段】リチウムニッケル複合酸化物の粒子からなる正極活物質を、正極活物質における金属の原子比に対応する金属の原子比を有する金属化合物を焼成して製造する方法であって、金属化合物が水酸化リチウムを含んでおり、金属化合物に配合する水酸化リチウムから採取した試料を加熱乾燥した際の質量減少割合に基づいて水酸化リチウムのリチウム含有量を算出し、このリチウム含有量に基づいて金属化合物に配合する水酸化リチウムの量を調整する。金属化合物を大量に調製する場合でも、金属化合物に含有されるリチウムと他の金属との原子数比の調整が容易になるから、金属化合物を焼成して得られる正極活物質中のリチウムと他の金属との原子数比を、目的とする原子数比とのズレを小さくできる。 (もっと読む)


【課題】 安定した結晶構造を備えつつさらなる高容量が達成される電極材料を提供することにある。
【解決手段】
本発明にかかるバナジウム系複合酸化物を含む電極材料に含まれるバナジウム系複合酸化物の組成M(0<x<1)は、その結晶相(MV)に対してアルカリ金属Mが欠損された組成であることから、本来カリウムイオンが存在するサイトにもリチウムイオンが挿入可能になることと、電解質中を伝導される電荷の移動抵抗が低下することにより、該電極材料を用いることで極めて高容量の蓄電デバイスを得ることができる。なお、Mの構成比を低下させてもアルカリ金属Mが存在することにより、結晶構造は大きく崩れることなく維持される。 (もっと読む)


【課題】放電容量が大きく、初期充放電効率が優れた非水電解質二次電池を得るための正極活物質及びその製造方法を提供すること、その正極活物質に用いることができる新規なリチウム遷移金属複合酸化物を提供する。
【解決手段】リチウム遷移金属複合酸化物を含む非水電解質二次電池用正極活物質において、前記リチウム遷移金属複合酸化物が、Li、並びにCo、Ni及びMnを含む遷移金属元素(一般式LiCoNiMn、a+x+y+z=2)で構成され、その全遷移金属元素Meに対するLiのモル比Li/Meが1.250〜1.350であり、モル比Co/Meが0.040〜0.195であり、モル比Mn/Meが0.625〜0.707であることを特徴とする。また、溶液中でCo、Ni及びMnを含有する化合物を共沈させて前駆体を製造する工程、前記前駆体とリチウム化合物を混合し、焼成する工程を含むことを特徴とする前記非水電解質二次電池用正極活物質(前記リチウム遷移金属複合酸化物)の製造方法であって、焼成温度が、800〜900℃であることを特徴とする。 (もっと読む)


【課題】 金属−酸素八面体からなる六員環構造が、シート断面方向に複数規則的に配列した2Dブロンズ構造を有した酸化タングステンナノシート、その製造方法、および、それを用いた素子を提供すること。
【解決手段】 2Dブロンズ構造を持つホスト層からなる層状ポリタングステン酸を、そのホスト構造を維持したまま固体酸特性を有する水素イオン交換体に転換し、その層間に嵩高いカチオンを導入することによって単層剥離現象を誘発することによって、金属−酸素八面体からなる六員環構造がシート断面方向に規則的に配列した2Dブロンズ構造を有する酸化タングステンナノシートを得る。 (もっと読む)


【課題】優れた電池性能を得ることが可能な二次電池を提供する。
【解決手段】正極21の正極活物質層21Bは、正極活物質を含む。この正極活物質は、Li1+a (Mnb Coc Ni1-b-c 1-a M1d 2-e (M1はアルミニウム等、aは0<a<0.25、bは0.5≦b<0.7、cは0≦c<1−b、dは0.01≦d≦0.2、eは0≦e≦1)で表される元素M1を含む複合酸化物のうち、その表層領域における結晶構造中に元素M1とは異なる元素M2が取り込まれたものである。この元素M2は、マグネシウム等である。 (もっと読む)


【課題】遷移金属元素を含有する溶液をアルカリと工業的スケールで均一に混合でき、高品質な遷移金属水酸化物を得ることができる方法を提供する。
【解決手段】攪拌機構を有する管型反応器内に、遷移金属元素を含む溶液とアルカリ溶液とを送液して、該管型反応器内で攪拌混合しながら接触させ、連続的に遷移金属水酸化物を主成分とする固形物を含むスラリーを得る工程を含む遷移金属水酸化物の製造方法。 (もっと読む)


【課題】 危険有害性の高い材料を用いることなく、2−エチルヘキサン酸ビスマスを含むセラミックス膜形成用組成物を容易に製造することができるセラミックス膜形成用組成物の製造方法、圧電セラミックス膜及び2−エチルヘキサン酸ビスマスの製造方法を提供する。
【解決手段】 酢酸ビスマスと、2−エチルヘキサン酸と、を含む混合溶液を調製する工程と、前記混合溶液を酢酸の沸点以上の温度に加熱して、2−エチルヘキサン酸ビスマスを含む錯体溶液を得る工程と、を具備し、前記錯体溶液を含むセラミックス膜形成用組成物を得る。 (もっと読む)


【課題】遷移金属系化合物を短時間で効率的に製造する。
【解決手段】リチウム化合物と遷移金属化合物を含む混合物を焼成して遷移金属系化合物を製造する方法において、リチウム化合物および遷移金属化合物を造粒した後、移動床式の焼成炉を用いて焼成することを特徴とする遷移金属系化合物の製造方法。 (もっと読む)


【課題】本発明は、サイクル特性、レート特性に優れるリチウムイオン二次電池用の正極活物質、正極、リチウムイオン二次電池、および、リチウムイオン二次電池用正極活物質の製造方法を提供する。
【解決手段】Li元素と、Ni、CoおよびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物の表面に、Zr、Ti、Sn、Mg、Ba、Pb、Bi、Nb、Ta、Zn、Y、La、Sr、Ce、InおよびAlから選ばれる少なくとも一種の金属元素の酸化物(I)の微粒子が付着する粒子(II)からなることを特徴とする。 (もっと読む)


【課題】空気より高濃度の二酸化炭素を含む焼成雰囲気においても、非水電解質二次電池の正極活物質として使用できるリチウム複合金属酸化物を安定に製造することのできる方法を提供する。
【解決手段】リチウム化合物と、Ni金属またはその化合物と、Mn、Co、Ti、Cr及びFeからなる群から選ばれる1種以上の遷移金属元素からなる金属またはその化合物とを混合し、得られた原料混合物を二酸化炭素濃度1体積%以上15体積%以下の雰囲気下、630℃以上で焼成するリチウム複合金属酸化物の製造方法。該製造方法で得られたリチウム複合金属酸化物を正極活物質に使用した非水電解質二次電池は、二酸化炭素を含まない空気雰囲気で製造した正極活物質に使用した非水電解質二次電池に匹敵する充放電特性を示す。 (もっと読む)


【課題】空気より高濃度の二酸化炭素を含む焼成雰囲気においても、非水電解質二次電池の正極活物質として使用できるリチウム複合金属酸化物を安定に製造することのできる方法を提供する。
【解決手段】リチウム化合物と、Ni金属またはその化合物と、Mn、Co、Ti、Cr及びFeからなる群から選ばれる1種以上の遷移金属元素からなる金属またはその化合物とを混合し、得られた原料混合物を二酸化炭素濃度1体積%以上15体積%以下の雰囲気下、630℃以上で焼成するリチウム複合金属酸化物の製造方法。該製造方法で得られたリチウム複合金属酸化物を正極活物質に使用した非水電解質二次電池は、二酸化炭素を含まない空気雰囲気で製造した正極活物質に使用した非水電解質二次電池に匹敵する充放電特性を示す。 (もっと読む)


【課題】非水電解質二次電池用正極活物質を製造するにあたり、装置が大型化することを回避しながら、効率的な製造が可能となる正極活物質及びその前駆体の製造方法を提供する。
【解決手段】非水電解質二次電池用正極活物質の前駆体の製造方法は、リチウムの塩、Ni、Co、Mn及びFeからなる群より選ばれる少なくとも1種の遷移金属元素の塩、並びにリチウムの塩及び遷移金属元素の塩が溶解する水を含有する溶液から、気流乾燥によって水を除去し、リチウム及び遷移金属元素を含み正極活物質の前駆体である固体粒子を生成させる工程を有する。 (もっと読む)


【課題】アルカリ遷移金属酸化物化合物は、比較的容量が低いという欠点がある。そのため、セルとして使用する場合、重大な容量減少という欠点を回避することなく、許容できる容量を備えたリチウム含有電極物質を提供する。
【解決手段】本発明による活物質は、少なくとも1つのアルカリ金属と少なくとも1つの、高い酸化状態に酸化可能な他の金属を含む。好ましい前記他の金属は遷移金属(周期律表4〜14に規定された)から選択されたもの、いくつかの錫、ビスマス鉛のような非遷移金属である。合成反応の少なくとも1つの段階で、還元性炭素が出発物質として使用される。1つの様相では、還元性炭素は元素状炭素、好ましくはグラファイト、アモルフォス炭素、カーボンブラックなど粒状で供給される。他の様相では、還元性炭素は有機原料物質あるいは元素状炭素と有機原料物質の混合物によって供給される。 (もっと読む)


【課題】
Li二次電池の正極活物質に用いるリチウム−ニッケル−マンガン−コバルト複合酸化物は、充填密度(プレス密度)が増大しても電池性能、特に放電容量、放電容量維持率が低下しない、リチウム−ニッケル−マンガン−コバルト複合化合物の提供。
【解決手段】
プレス密度が3.47〜4.5g/cmであり、体積基準の粒度分布において10μm以下の粒子の割合が26〜60体積%であるリチウム−ニッケル−マンガン−コバルト複合酸化物を正極材料として用いる。リチウム−ニッケル−マンガン−コバルト複合酸化物は、下記化学式で示すBET比表面積が0.05〜1.0m/gであることが好ましい。Li1+aNiMnCo(MはNi,Mn,Co及びLi以外の金属) a+b+c+d+e=1 0<a≦0.2 0.2≦b/(b+c+d)≦0.4 0.2≦c/(b+c+d)≦0.4 0<d/(b+c+d)≦0.4 0≦e≦0.1 (もっと読む)


101 - 120 / 805