説明

Fターム[4G072NN01]の内容

珪素及び珪素化合物 (39,499) | 結晶、薄膜系操作 (908) | 多結晶化 (203)

Fターム[4G072NN01]に分類される特許

1 - 20 / 203



【課題】廉価にゲッタリング効果を得つつ高品質化を図る。
【解決手段】溶融シリコンを坩堝内の下方から上方に向けて一方向に凝固させることにより生成させた多結晶シリコンインゴットであって、上端部および下端部における酸素濃度が、この上端部とこの下端部との間の中央部における酸素濃度より高い。また、上端部における酸素濃度が下端部における酸素濃度より高い。 (もっと読む)


【課題】高圧化・高負荷化・高速化された反応系においても、ポップコーンの発生が抑制され、高純度な多結晶シリコン棒を安定的に製造するための技術を提供すること。
【解決手段】本発明では、シリコン芯線上にシリコンを析出させて多結晶シリコン棒を得る多結晶シリコンの製造方法において、析出反応の初期段階(前段工程)では原料ガスを反応炉に大量に供給することにより反応速度を上げることはせず供給する原料ガスの濃度を高濃度とすることにより反応速度を上げ、当該前段工程の後の後段工程では反応炉内に原料ガスを高速で吹き込むことにより生じる高速強制対流の効果を利用してポップコーンの発生確率を低く抑えることとした。これにより、高圧化・高負荷化・高速化された反応系においても、ポップコーンが少なく、かつ、高純度な多結晶シリコン棒を、生産効率を低下させることなく製造することが可能になる。 (もっと読む)


【課題】ヒータが側方に配置された場合にインゴット割れおよび結晶欠陥の発生を抑制し、高品質な多結晶シリコンインゴットを低コストで製造する。
【解決手段】坩堝20と、坩堝20の側方に位置するヒータと、坩堝20の底面部と接触して位置する載置台40とを備える。載置台40においては、周側部における熱伝導の方が中央部における熱伝導より大きい。 (もっと読む)


【課題】凝固偏析により金属融液から得られた精製塊中の不純物濃度を簡易にスクリーニングし得る金属精製塊の検査方法、それを含む高純度金属の製造方法およびその用途を提供することを課題とする。
【解決手段】不純物を含む金属融液に精製塊支持体を接触させ、次いで凝固偏析により前記精製塊支持体の表面に析出させた前記金属融液の金属精製塊に含まれる不純物濃度により規定される前記金属精製塊の良または不良を、前記金属精製塊外周面の表面状態に基づいて検査することを特徴とする金属精製塊の検査方法により、上記の課題を解決する。 (もっと読む)


【課題】SiC異物が少なく、高品質かつ大きなサイズの多結晶シリコンインゴットを製造することができる、多結晶シリコンインゴット製造装置を提供すること。
【解決手段】上方開口部を有する坩堝と、前記坩堝の外周に設けられて坩堝内に収容されたシリコン原料を加熱し溶融する加熱部と、前記坩堝と前記加熱部とを相対的に上下方向に移動させる移動機構と、不活性ガス導入孔を有すると共に前記坩堝の上方開口部を開閉可能に覆うカバーと、前記不活性ガス導入孔へ不活性ガスを導入する不活性ガス導入管とを備えたことを特徴とする、多結晶シリコンインゴット製造装置。 (もっと読む)


【課題】シーメンス法により多結晶シリコンを製造する際のシリコン芯線の効率的な加熱を実現し、シリコン芯線へのダメージを軽減するとともに、カーボンヒータの寿命を延ばし得る技術を提供すること。
【解決手段】水素ガス気密テスト完了後に一旦炉内圧力を所定の値にまで下げ、多結晶シリコンの析出反応工程時の圧力よりも低い炉内圧力下でシリコン芯線を通電加熱する。シリコン芯線12のバルク温度は、カーボンヒータ14からの輻射熱量、シリコン芯線12から雰囲気ガスへの対流伝熱量、シリコン芯線ホルダへの伝導伝熱量、ベルジャ1やベースプレート5への輻射熱量等のバランスによって決まり、入熱量が不変でも出熱量が低下すればシリコン芯線12のバルク温度は上昇する。本発明においては、シリコン芯線12の表面から対流により奪われる熱量を抑えるため、初期加熱工程時の炉内圧力を多結晶シリコンの析出反応工程時の圧力よりも低く設定する。 (もっと読む)


【課題】 珪素の高い初期効率と電池容量を維持しつつ、サイクル特性に優れ、充放電時の体積変化を減少させた非水電解質二次電池の負極用として有効な活物質としての珪素粒子からなる負極活物質の製造方法を提供する。
【解決手段】 非水電解質を用いる二次電池用の負極活物質の製造方法であって、金属珪素を原料とした電子線蒸着法により、温度を800−1100℃に制御した基板上に、1kg/hrを超える蒸着速度で、蒸着膜厚が2−30mmの範囲で珪素を堆積させる工程と、該堆積させた珪素を粉砕・分級して、前記負極活物質を得る工程とを含むことを特徴とする非水電解質二次電池用負極活物質の製造方法。 (もっと読む)


【課題】シリコン芯線の初期通電時の通電傷の発生を防止し、反応初期段階におけるシリコン芯線の倒壊トラブルを防止すること。
【解決手段】2対のシリコン芯線12の間にはバイパス回路17が設けられており、スイッチ16をB端子側に接続することにより、2対のシリコン芯線12を直列に電源15に接続可能である。スイッチ16をA端子側に切り替えることで、1対のシリコン芯線(左側)のみを電源15に接続することもできる。先ず、カーボンヒーター13からの輻射Rにより2対のシリコン芯線を200℃〜400℃に加熱してする。その後、左側のシリコン芯線12のみに通電する状態(半通電状態)として初期印加電圧を加える。このような通電開始により左側のシリコン芯線は自己発熱してその温度が上昇し抵抗率は低下する。この通電開始の後に、左側のシリコン芯線と右側のシリコン芯線を直列に接続し(全通電状態)、2対のシリコン芯線に通電する。 (もっと読む)


【解決課題】反応炉内に析出した多結晶シリコンの反応炉内からの取り出しが容易であり、製造効率が高い多結晶シリコンの製造方法を提供すること。
【解決手段】反応炉内で四塩化珪素と亜鉛を反応させて、反応炉内に多結晶シリコンを生成させる第一工程と、907〜1200℃で、該反応炉内に、四塩化珪素のみを供給するか、又は四塩化珪素に対する亜鉛のモル比が、該第一工程でのモル比よりも小さくなる供給量で、四塩化珪素及び亜鉛を供給する第二工程と、該反応炉内の温度が800℃以上で、反応炉内を不活性ガス雰囲気にし、次いで、多結晶シリコンを、800℃以上の反応炉内から、該反応炉に繋がる不活性ガス雰囲気の冷却空間へ移動させることにより、多結晶シリコンを反応炉内から反応炉外へ取り出し、冷却する第三工程と、を有することを特徴とする多結晶シリコンの製造方法。 (もっと読む)


【課題】ソリが少なく横断面形状の真円度も高い良好な形状を有する多結晶シリコン棒を、生産効率を落とすことなく得ることを可能とする技術を提供すること。
【解決手段】多結晶シリコン製造装置が備える反応炉に設けられる原料ガス供給ノズル9と金属電極(電極対)10は下記の配置関係を満足する。すなわち、円盤状底板5の中央に中心を有する仮想の同心円C(半径c)は、面積S0の底板5の半分の面積S=S0/2を有している。また、同心円Aおよび同心円Bはそれぞれ、同心円Cと中心を同じくする半径aおよび半径b(a<b<c)の仮想同心円である。本発明では、電極対10は上述の仮想の同心円Cの内側であって仮想の同心円Bの外側に配置され、ガス供給ノズル9は何れも上述の仮想の同心円Aの内側に配置される。また、同心円Bの半径bと同心円Aの半径aの差は、20cm以上で50cm以下とされる。 (もっと読む)


【課題】高品質な多結晶シリコンインゴットを作製する。
【解決手段】坩堝20の周囲に配置された3n個(nは自然数)の抵抗加熱ヒータに3相交流を供給し、3相交流によって生じる回転磁場を作用させつつ、坩堝20内のシリコンを加熱して溶解させる加熱工程と、上記回転磁場を作用させつつ、坩堝20の底部から上部に向けて冷却してシリコンを凝固させる冷却工程と備える。 (もっと読む)


【課題】より結晶成長に適した温度勾配を形成でき、品質の高い結晶を製造できる結晶成長装置を提供する。
【解決手段】上端に開口31を有し、下端に底部32を有するるつぼ3と、るつぼ3を包囲し、るつぼ3の上下方向に沿って第1の位置と第2の位置の間を移動できる加熱装置2とを有しており、加熱装置2が稼動すると、るつぼ3の底部32の側から開口31の側に向かう順に、第1の温度域201と、第1の温度域201よりも温度が高い第2の温度域202とがそれぞれ画成され、加熱装置2が前記第1の位置にあるときに、るつぼ3は第2の温度域202にあり、加熱装置2が前記第2の位置にあるときに、るつぼ3は第1の温度域201にあることを特徴とした結晶成長装置。 (もっと読む)


【課題】CVD反応器の電極保持部の封止部の保護を改善すること。
【解決手段】CVD反応器の電極保持部と底板との間のスペースを封止する封止材料が、電極を環状に包囲するように配置され一体形であるかまたは複数の部分から成る保護体によって保護され、該保護体の高さが少なくとも局所的に、該電極保持部に向かうほど増大していく構成によって解決される。 (もっと読む)


【課題】電流の流れる方向に電気抵抗率が低く、操業時のシード(種棒)の保持性と操業後の折れ易さを兼ね備えたシード保持部材、該シード保持部材を用いた多結晶シリコン製造装置、及び該シード保持部材の製造方法を提供する。
【解決手段】シーメンス法で多結晶シリコンを製造する炉の底部に設置された電極部5に装着され、種棒となるシード4の下端部を保持する黒鉛製のシード保持部材6は、押出し材から成り、押出し材の押出し方向がシードと略平行となる(シード保持部材6の軸芯方向Aが押出し方向と略一致する)ように構成されている。シード保持部材6の曲げ強度は10〜25MPaが好ましく、15〜25MPaであるのがより好ましい。 (もっと読む)


【課題】シリコン芯線の芯線ホルダへの装着が容易であり、芯線ホルダにシリコン芯線を充分な強度で保持させるまでの時間を短くし、転倒を防止するとともに、多結晶シリコンの析出反応初期における成長速度抑制時間の短縮化を可能とする多結晶シリコン製造技術を提供すること。
【解決手段】芯線ホルダ20には本体の上面に開口部22をもち下面側に向かう芯線挿入孔21が形成されており、この芯線挿入孔21にシリコン芯線5が挿入される。また、芯線挿入孔21の中心軸Cを含む仮想平面Pに沿うスリット状の間隙部60が形成されており、このスリット状間隙部60は、芯線挿入孔21からホルダ20の本体の外側面にまで至る間隙部となっている。芯線挿入孔21に挿入されたシリコン芯線5は、例えばボルト・ナット方式の固定部材31によってホルダ20の本体の上部が側面から締め付けられることにより、間隙部60の間隔が狭まるように締め付けられて固定される。 (もっと読む)


【課題】シリコン芯線の芯線ホルダへの装着が容易であり、芯線ホルダにシリコン芯線を充分な強度で保持させるまでの時間を短くし、転倒を防止するとともに、多結晶シリコンの析出反応初期における成長速度抑制時間の短縮化を可能とする多結晶シリコン製造技術を提供すること。
【解決手段】芯線ホルダ20には本体の上面に開口部22をもち下面側に向かう芯線挿入孔21が形成されている。また、ホルダ20の本体上部には孔部(固定部材挿入孔)が形成されており、当該孔部にボルト状の部材(固定軸)が通される。芯線挿入孔21に挿入されたシリコン芯線5は、このようなボルト・ナット方式の固定部材31によってホルダ20の本体の上部が側面から締め付けられることにより固定される。 (もっと読む)


【課題】カーボンヒータにより加熱されたシリコン芯線の熱が電極側へと放熱される程度を抑制し、析出反応開始時通電開始時においてシリコン芯線の温度を効率よく高める技術を提供すること。
【解決手段】金属製の電極10は、上部にアダプタ14を載置できる構造になっている。アダプタ14の上部には芯線ホルダ13が固定され、さらに、芯線ホルダ13にはシリコン芯線11が固定される。本発明の多結晶シリコン製造装置は、少なくとも、シリコン芯線11を保持する炭素製の芯線ホルダ13と、シリコン芯線11に通電するための電極10とを備えており、電極10からシリコン芯線11に至る導電経路の少なくとも一か所に断熱シート17が配置されている。そして、この断熱シート17の厚み方向の熱伝導度は芯線ホルダ13の熱伝導度よりも低いものとされる。 (もっと読む)


【課題】Siインゴット結晶の製造に際し、融液内成長においてSiインゴット結晶を大きく成長させることができるとともに、歪みが十分低減され、かつ生産効率が良いSiインゴット結晶の製造方法を提供する。
【解決手段】Siインゴット結晶のルツボ融液内成長において、融液上部よりも下部の方が高温となる温度分布を有するSi融液の表面近傍でSi種結晶を用いて核形成させ、Si種結晶からSi融液の表面に沿って又は内部に向かってインゴット結晶を成長させる第1の工程と、成長したインゴット結晶の一部を融液内から融液と分離しない程度に引き上げる第2の工程と、融液内に残った結晶からSi融液の表面に沿って又は内部に向かってインゴット結晶を引き続き成長させる第3の工程とを含み、上記第2及び第3の工程を順次複数回繰り返してインゴット結晶を成長させる。 (もっと読む)


【課題】 シリコン析出のために十分な熱と流動ガスとを均一に供給することができ,多結晶シリコンの大量生産が可能であり、組み立て、設置及びメンテナンスが容易な流動層反応器を提供する。
【解決手段】 反応管と、独立的に制御して流動ガスを前記反応管の内部に供給する流動ガス供給部と、前記反応管の内部に反応ガスを供給する反応ガス供給部と、を含む。 (もっと読む)


1 - 20 / 203