説明

Fターム[4G072UU02]の内容

珪素及び珪素化合物 (39,499) | 分野・用途 (3,449) | 太陽電池 (746)

Fターム[4G072UU02]に分類される特許

121 - 140 / 746


【課題】鋳造されたインゴットが不純物で汚染されるのを低減できるとともに、冷却ルツボの内面が損傷するのを軽減できるシリコンインゴットの連続鋳造方法を提供する。
【解決手段】軸方向の一部が周方向で複数に分割された無底の冷却ルツボ7を誘導コイル8内に配置し、誘導コイル8による電磁誘導加熱により、冷却ルツボ7内に溶融シリコン13を形成し、冷却ルツボ7から引き下げながら凝固させてシリコンインゴット3を連続鋳造する方法において、冷却ルツボ7として、その内面7aのうちの溶融シリコンの外面13aおよびシリコンインゴットの外面3aと対向する部分7bに、Ni−B合金めっきが施されたものを用いることを特徴とするシリコンインゴットの連続鋳造方法である。 (もっと読む)


【課題】銅製の冷却モールドに起因するシリコンインゴットの銅による汚染を抑制して、太陽電池の基板材の素材として好適なシリコンインゴットの製造方法を提供する。
【解決手段】シリコン原料を銅製の無底冷却モールド1に装入し、電磁誘導により溶融し、当該溶融したシリコンを下方に引き下げ凝固させることにより多結晶シリコンインゴットを連続的に鋳造するシリコンインゴットの電磁鋳造方法であって、前記銅モールドを取り囲む誘導コイル2の下端から下方に位置するモールド長さ(LM)を40mm超180mm以下として、銅モールドに近接するシリコンインゴットの外周部から内部への銅の拡散、混入を抑制する。一辺の長さが322mm以上530mm以下の正方形または矩形断面の多結晶シリコンインゴットを鋳造対象とする実施形態の採用が望ましい。 (もっと読む)


【課題】表面ダストの含量が少なくコスト的に好ましい多結晶シリコンを提供する。
【解決手段】多結晶シリコン破砕破片を含有する多結晶シリコンであって、前記破砕破片の少なくとも90%が明細書中に記載のサイズを有する前記多結晶シリコンにおいて、シリコンダスト粒子の割合が、400μm未満の粒子サイズについては15ppmw未満であり、50μm未満の粒子サイズについては14ppmw未満であり、10μm未満の粒子サイズについては10ppmw未満であり、かつ1μm未満の粒子サイズについては3ppmw未満であることと、さらに、金属による表面汚染が、0.1ppbw以上で100ppbw以下であることと、を特徴とする前記多結晶シリコンによって解決される。 (もっと読む)


【課題】電磁鋳造法による連続鋳造の際、サイドアークの発生を抑制しつつ、溶解速度を上昇できるシリコンインゴットの電磁鋳造装置を提供する。
【解決手段】無底冷却ルツボ7に原料導入管10を通じてシリコン原料11を投入し、誘導コイル8からの電磁誘導加熱、およびルツボ7の上部に挿入されたプラズマトーチ13からのプラズマアーク加熱によりシリコン原料11を溶解させ、この溶融シリコン12をルツボ7から引き下げながら凝固させてインゴット3を連続鋳造する電磁鋳造装置において、原料導入管10が絶縁部材21を介して支持されるとともに、原料導入管10の先端がルツボ7内でプラズマトーチ13の先端と同じ高さの位置、またはそれよりも高くてルツボ7の上端よりも低い位置に配置されており、この原料導入管10を通じてシリコン原料11が溶融シリコン12の湯面の中央に投入される。 (もっと読む)


【課題】下地板を用いた薄板の製造において、下地板を融液から引き上げるときの薄板の剥がれおよび割れを防止する。
【解決手段】主面110と、主面110を取り囲む側面とを有する下地板100が準備される。側面は、先端部121と、先端部121につながる側方部131と、先端部121に対向する後端部141とを有する。後端部141は側方部131に後端角部151を介してつながっている。後端角部151は、側方部131と後端部141との間の角が面取りされた部分である。次に、薄板の材料の融液中に主面110を浸漬することによって、主面110上に薄板が成長させられる。そして、融液から先端部121を引き上げた後に後端部141を引き上げることによって、融液から主面110が取り出される。融液から取り出された主面110から薄板が取り外される。 (もっと読む)


【課題】保温装置の外枠の溶損等を防止して、金属不純物による汚染のない、太陽電池の基板材として好適な多結晶シリコンを製造することができるシリコンの電磁鋳造装置を提供する。
【解決手段】無底冷却モールドと、加熱用誘導コイルと、前記モールドの下方に配置され、凝固したシリコンを徐冷する保温装置を有し、前記誘導コイルによる電磁誘導加熱により溶融したシリコンを下方に引き下げ凝固させるシリコンの電磁鋳造装置であって、前記保温装置13の外枠16の構成部材として非導電性部材が使用されている電磁鋳造装置。前記非導電性部材を、特に溶損の大きい外枠の特定の面のみ、または外枠全面の上部のみに使用することもできる。非導電性部材としては、アルミナ、炭化珪素が望ましい。 (もっと読む)


【課題】本発明の目的は、太陽電池の基板として用いることによって太陽電池の変換効率の低下を抑制することのできる多結晶シリコン及びその鋳造方法を提供することにある。
【解決手段】本発明の多結晶シリコンは、FT−IR法(ASTM F121−79)で測定した格子間酸素濃度が1.0×1017atoms/cm3以下であり、該多結晶シリコンウェーハを基板として用いた太陽電池の変換効率の低下率が3%以下であることを特徴とする。
また、本発明の多結晶シリコンの鋳造方法は、冷却銅モールドの酸素含有率が低く、且つチャンバ内の酸素分圧が低いことを特徴とする。 (もっと読む)


【課題】鋳造されるインゴットおよびインゴットから切り出されたウェーハおいて、金属不純物による汚染を低減できるシリコンインゴットの連続鋳造装置および連続鋳造方法を提供する。
【解決手段】電磁鋳造法により多結晶シリコンを連続的に鋳造する際に用いられ、導電性を有し、シリコン原料を溶解させて連続鋳造する無底の冷却ルツボ7と、冷却ルツボを囲繞し、冷却ルツボ内に装入されたシリコン原料を電磁誘導により加熱する誘導コイル8と、前記各部材を収容するチャンバー1とを備えたシリコンインゴットの連続鋳造装置において、チャンバー1の内壁面および/またはチャンバー1内に収容される部材の表面の少なくとも一部にウール材17を配置することを特徴とするシリコンインゴットの連続鋳造装置である。 (もっと読む)


【課題】保温装置内の温度環境の変化を防止して安定した操業を行い、金属不純物による汚染のない、太陽電池の基板材として好適な多結晶シリコンを製造することができるシリコンの電磁鋳造装置を提供する。
【解決手段】無底冷却モールドと、加熱用誘導コイルと、前記モールドの下方に配置され、凝固したシリコンを徐冷する保温装置を有し、前記誘導コイルによる電磁誘導加熱により溶融したシリコンを下方に引き下げ凝固させるシリコンの電磁鋳造装置であって、モールド1と保温装置3の外枠6との間の隙間に、炭素繊維材8aの上に断熱材8bが載置されてなる保温ボード8が配置された電磁鋳造装置。前記炭素繊維材は、少なくとも1箇所で切断されていることが望ましい。炭素繊維材に替えて炭化珪素製またはアルミナ製の部材も使用できる。 (もっと読む)


【課題】冷却ルツボへのシリコン原料の投入に伴ってシリコン原料がプラズマトーチと接触するのを防止し、溶融シリコンの金属不純物汚染を抑制するとともに、シリコン原料の融解を安定させることができるシリコンインゴットの電磁鋳造装置を提供する。
【解決手段】導電性を有する無底冷却ルツボ7に原料導入管10を通じてシリコン原料11を投入し、冷却ルツボ7を囲繞する誘導コイル8からの電磁誘導加熱、および冷却ルツボ7の上部に挿入されたプラズマトーチ13からのプラズマアーク加熱によりシリコン原料11を融解させ、この溶融シリコン12を冷却ルツボ7から引き下げながら凝固させてシリコンインゴット3を連続鋳造する電磁鋳造装置において、冷却ルツボ7の側壁に貫通穴7cが形成され、この貫通穴7cに原料導入管10が接続されている。 (もっと読む)


【課題】 シリコン融液及び多結晶シリコンインゴットへの不純物汚染を抑制しながらも、離型性に優れた、きわめて低コストの多結晶シリコンインゴット製造用角形シリカ容器を提供する。
【解決手段】 シリコン融液を収容した後凝固して多結晶シリコンインゴットを製造するための角形シリカ容器であって、多孔質シリカからなる平行平板状の多孔質シリカ板体を組み合わせて構成されたものであり、前記多孔質シリカ板体の両平行平面の表面部分のかさ密度が、前記角形シリカ容器の内表面部分よりも外表面部分において高い多結晶シリコンインゴット製造用角形シリカ容器。 (もっと読む)


【課題】Siヒュームが発生した場合であっても、冷却ルツボの直下でインゴットの鋳肌表面の温度変動を正確に監視できるシリコンインゴットの電磁鋳造装置を提供する。
【解決手段】チャンバー1内に配置した無底冷却ルツボ7にシリコン原料11を投入し、ルツボ7を囲繞する誘導コイル8からの電磁誘導加熱により原料11を溶解させ、この溶融シリコン12をルツボ7から引き下げながら凝固させてインゴット3を連続鋳造する電磁鋳造装置において、チャンバー1の側壁に監視窓15を設け、監視窓15とルツボ7の直下におけるインゴット3の鋳肌表面近傍との間にわたり耐熱管17を設け、耐熱管17のインゴット3側の端面が耐熱板18で閉塞されており、監視窓15の外部の放射温度計16により耐熱管17内を通して耐熱板18の温度を測定し、この温度に基づいてインゴット3の鋳肌表面温度の変動を監視する。 (もっと読む)


【課題】プラズマアークによるプラズマ加熱を併用して、太陽電池の基板材としての高品質の多結晶シリコンインゴットを製造するに際し、最終凝固位置においてクラックを生じさせずに安定して製造することができるシリコンの電磁鋳造装置を提供する。
【解決手段】無底冷却モールド1と、加熱用誘導コイル2を有し、前記誘導コイルによる電磁誘導加熱により溶融したシリコンを下方に引き下げ凝固させるシリコンの電磁鋳造装置であって、さらに、移行式プラズマアークを発生させるプラズマトーチを有し、かつ、溶融シリコン4表面に対向可能に構成された、前記誘導コイルによる電磁誘導によって発熱するトップヒーター3を備える電磁鋳造装置。トップヒーターが2個以上に分割されたものであれば、最終凝固時に、溶融シリコンの表面全体を高温に維持し、全体が高品質のインゴットを得ることができるので望ましい。 (もっと読む)


【課題】電磁誘導加熱にプラズマ加熱を併用して、太陽電池の基板材として用いられる、太陽電池としての変換効率が高く維持された多結晶シリコンインゴットを製造することができるシリコンインゴットの製造装置および製造方法を提供する。
【解決手段】無底冷却モールド1と、加熱用誘導コイル2を有し、さらに、加熱源としてプラズマトーチ3を有し、電磁誘導加熱とプラズマ加熱を併用するシリコンインゴットの製造装置であって、前記プラズマトーチ内に配設されたプラズマ電極12として銅(Cu)を用いる製造装置。前記プラズマ電極を陽極とし、被加熱物であるシリコン11を陰極とすれば(図1(c)参照)、電極の消耗を僅少に抑えるとともに、太陽電池を構成したときの変換効率を向上させ得るので望ましい。本発明の製造方法は、この装置を用いて容易に実施することができる。 (もっと読む)


【課題】鋳造されたシリコンインゴットから切り出されたウェーハにおいて、局所的に金属不純物により汚染された異常部が発生するのを抑え、金属不純物による汚染を低減できるシリコンインゴットの連続鋳造装置および連続鋳造方法を提供する。
【解決手段】電磁鋳造法により多結晶シリコンを連続的に鋳造する際に用いられ、導電性を有し、シリコン原料を溶解させて連続鋳造する無底の冷却ルツボ7と、冷却ルツボ7を固定する天板10と、冷却ルツボ7の外側を囲繞し、冷却ルツボ7の内側に装入されたシリコン原料を電磁誘導により加熱する誘導コイル8とをチャンバー1内に備えたシリコンインゴットの連続鋳造装置において、冷却ルツボ7の上面に冷却ルツボの内側と外側を仕切る仕切り部材17を設けることを特徴とするシリコンインゴットの連続鋳造装置である。 (もっと読む)


【課題】蓄電装置の特性を向上させることができる正極用の活物質及びその作製方法を提供する。
【解決手段】蓄電装置の正極用の活物質として、一般式Li(2−x)M1M2SiOで表され、以下の(I)乃至(IV)を満たす材料を用いる。(I)xは充放電中のリチウムイオンの挿入及び脱離で変化する値であり、0≦x<2を満たす。(II)M1は、鉄(Fe)、ニッケル(Ni)、マンガン(Mn)、若しくはコバルト(Co)のうちいずれか一又は複数の遷移金属原子である。(III)M2は、チタン(Ti)、スカンジウム(Sc)又はマグネシウム(Mg)の金属原子である。(IV)y+z=1、0<y<1、及び0<z<1を満たす。z/(y+z)は、0.01以上0.2以下を満たす。 (もっと読む)


【課題】基材と多孔質シリカ膜との密着性が高く、可視光線透過率が高い、多孔質シリカ膜を有する積層体を提供する。
【解決手段】Tgが200℃以下の透光性基材上に、屈折率が1.20〜1.35である多孔質シリカ膜を有する積層体であって、ミルスペックMIL−CCC−c−440に記載のチーズクロスを荷重500g/cmで前記多孔質シリカ膜表面上を20往復させる耐摩耗性試験において、前記積層体の可視光線透過率の変化量が、試験前の前記積層体の可視光線透過率に対して5%未満であることを特徴とする積層体。 (もっと読む)


【課題】透明性、屈折率、耐磨耗性に優れた多孔質体を提供する。
【解決手段】炭素数3〜12のアルキル基を含有し、かつ表面の最小反射率が1%以下であることを特徴とするセラミックス多孔質体。 (もっと読む)


【課題】電磁鋳造法による連続鋳造の際に、チャンバー内で自然対流する雰囲気ガスに起因して、溶融シリコンが金属不純物で汚染されることを防止できるシリコンインゴットの電磁鋳造装置を提供する。
【解決手段】チャンバー1内に配置した無底冷却ルツボ7にシリコン原料11を装入し、誘導コイル8からの電磁誘導加熱によりシリコン原料11を融解させ、この溶融シリコン12を冷却ルツボ7から引き下げながら凝固させてシリコンインゴット3を連続鋳造する電磁鋳造装置において、チャンバー1の側壁の上部と下部に連結され、冷却ルツボ7の上方の雰囲気ガスを導入して冷却ルツボ7の下方に送り出す通気管15を備え、この通気管15の経路に集塵機20および磁選機21を設ける。 (もっと読む)


【解決課題】反応炉の炉壁及び排出管内への多結晶シリコンの析出を防ぐことが可能な亜鉛還元法による多結晶シリコン製造用の反応炉を提供すること。
【解決手段】四塩化珪素と亜鉛を反応させて多結晶シリコンを生成させる反応炉であって、該反応炉内に内挿容器が設置されており、該内挿容器の下部には、排出ガスの排出口が形成されており、該内挿容器の外壁には、該排出口を囲む排出ガスの漏洩防止壁が形成されており、四塩化珪素蒸気の供給管、亜鉛蒸気の供給管、排出管及び不活性ガスの供給管を有し、該排出管内に、排出管用内挿管が設置されており、該排出ガス漏洩防止壁は、該排出管用内挿管の内側に入り込んでおり、且つ、該排出管用内挿管と該排出ガス漏洩防止壁との間及び該排出管用内挿管の管端と該内挿容器との間には、隙間が形成されていること、を特徴とする多結晶シリコン製造用の反応炉。 (もっと読む)


121 - 140 / 746