説明

Fターム[4G077TA07]の内容

結晶、結晶のための後処理 (61,211) | CVD (1,448) | 成長工程 (330) | 成長条件の特定(例;温度、圧力) (205)

Fターム[4G077TA07]に分類される特許

61 - 80 / 205


【課題】多結晶のGaN結晶の成長を抑制できるGaN結晶の成長方法およびGaN結晶の製造方法を提供する。
【解決手段】GaN結晶の成長方法は、以下の工程が実施される。まず、下地基板が準備される(ステップS1)。そして、下地基板上に、開口部を有し、かつSiO2よりなるマスク層が形成される(ステップS2)。そして、下地基板およびマスク層上に、GaN結晶が成長される(ステップS5)。マスク層の曲率半径が8m以上である。 (もっと読む)


【課題】溶液法により得られるIII族窒化物結晶基板を用いたHVPE(ハイドライド気相成長)法による大型のIII族窒化物結晶の成長方法を提供する。
【解決手段】アルカリ金属元素の濃度が1.0×1018cm-3未満の第1のIII族窒化物結晶10を準備する工程と、HVPE法により、1100℃より高い雰囲気温度で、第1のIII族窒結晶10の主面10m上に、第2のIII族窒化物結晶20を成長させる工程と、を備える。 (もっと読む)


【課題】結晶欠陥の少ない高品質の窒化物半導体基板を簡易な方法で製造する方法を提供する。
【解決手段】格子定数がa軸方向に0.30nmから0.36nmまで、c軸方向に0.48nmから0.58nmまでの化合物半導体元基板1の一方の面上に、第1の窒化物半導体層4を温度T1でエピタキシャル成長させ、次いで、温度T1より高い温度T2において、第1の窒化物半導体層4の形成時に使用されるガスと元基板1とを反応させて元基板1を除去する。 (もっと読む)


【課題】高品位で且つ低コストな発光素子用エピタキシャルウェハを提供する。
【解決手段】n型基板2上に、少なくともn型クラッド層6、活性層8、p型クラッド層を順次積層する化合物半導体発光素子用エピタキシャルウェハにおいて、n型基板2として、ほぼ円形であるn型基板の直径を(a)、n型基板の厚さを(b)としたとき、(b)/(a)が0.0047以下であるn型基板を用いて作製したものである。 (もっと読む)


本発明は、化学気相成長法を用いて基板(14)をコーティングするデバイス、特にダイヤモンド又はシリコンで基板をコーティングするデバイスであって、複数の細長い熱伝導体(2)から構成される熱伝導体アレイが、ハウジング(10)内に提供され、前記熱伝導体が、第1の電極(1)と第2の電極(8)との間に延在し、熱伝導体(2)が、その一端に取り付けられた緊張装置によって個別にぴんと張った状態に保持されるデバイスに関する。熱伝導体(2)の寿命を延ばすために、本発明は、緊張装置が緊張ウェイト(G)を有する傾斜アーム(5)を備え、熱伝導体(2)が前記傾斜アームの第1の端部(E1)に取り付けられ、その第2の端部がほぼ水平軸(H)周りに枢動可能に装着されることを提案する。
(もっと読む)


本発明は、化学気相成長法を用いて基板(14)をコーティングするデバイス、特にダイヤモンド又はシリコンで基板をコーティングするデバイスであって、複数の細長い熱伝導体(2)からなる熱伝導体アレイがハウジング(9)内に提供され、前記熱伝導体(2)が第1の電極(1)と第2の電極(6)との間に延在し、熱伝導体がその一端に取り付けられたウェイト(4)によって個別にぴんと張った状態に保持されるデバイスに関する。熱伝導体(2)の寿命を延ばすために、本発明は、ウェイト(4)によって生成されるウェイトフォース(G)のベクトルが熱伝導体(2)の長手延長方向と45°以下の角度(α)を形成するように、ウェイト(4)又は熱伝導体(2)が第2の電極(6)に案内されて電気的ループ接触が形成されることを提案する。
(もっと読む)


III−窒化物材料の半導体構造および層のエピタキシャル成長中に、連続する層の品質が連続して改善されるように応用可能な方法。中間エピタキシャル層は、成長ピットが、最初の表面に存在する表面転位で形成されるように、最初の表面に成長される。それから、次の層は、横方向に広がって少なくとも交差成長ピットの凝集を密閉するように、エピタキシャル横方向オーバーグロースの知られた現象に従って中間層上に成長される。好ましくは、横方向成長材料中の転位の数を減少させるために、次の層の成長より前に、誘電体材料が不連続に堆積するように誘電体材料の不連続膜が堆積される。本発明の方法は、同じ構造に対して複数回行うことができる。また、これらの方法によって製作された半導体構造。
(もっと読む)


反応炉の上流部に位置させたハロゲン化コバルトを含む第1先駆物質、反応炉の下流部に位置させたゲルマニウムを含む第2先駆物質、反応炉の下流部に位置させた基板を不活性ガス雰囲気で熱処理して、基板上にxが0.01以上0.99未満の値を有する単結晶体のCoGe1−xナノワイヤが形成される。また、基板としてグラフェンまたは高配向熱分解性黒鉛基板を用い、基板上に対して垂直配向性を有し、均一なサイズの高密度ゲルマニウムコバルトナノワイヤ構造体を提供することにより、ゲルマニウムコバルトナノワイヤを電界放出エミッタとして、ゲルマニウムコバルトナノワイヤが形成された基板を電界放出ディスプレイの陰極パネルの透明電極として使用できる。 (もっと読む)


【課題】本発明は、貴金属酸化物、貴金属またはハロゲン化貴金属を前駆物質として用いて単結晶基板の表面に対して方向性を有する貴金属ナノワイヤ及びその製造方法を提供する。
【解決手段】反応炉の前端部に配置した前駆物質と、反応炉の後端部に配置した半導体または不導体単結晶基板を、不活性ガスが流れる雰囲気下で熱処理して前記単結晶基板の表面に垂直または水平に成長する貴金属単結晶ナノワイヤ及びその製造方法。本発明は、触媒を使用しない気相輸送法を利用して貴金属ナノワイヤを製造することができ、その工程が簡単でかつ再現性があり、大量生産に適するメリットがある。製造されたナノワイヤは、欠陥や不純物を包含しない完璧な単結晶状態の高純度かつ高品質の貴金属ナノワイヤである。貴金属ナノワイヤは、単結晶基板の表面に対して特定の方向性を有し、その方向性及び配列を制御することができる。 (もっと読む)


【課題】高純度で光学特性に優れた窒化アルミニウム単結晶基板を提供する。
【解決手段】無機ベース基板11上に、第一の窒化アルミニウム単結晶層12を成長させて、第一の積層体15を製造し、第一の積層体15から無機ベース基板11を分離して窒化アルミニウム単結晶自立基板16を準備する。前記窒化アルミニウム単結晶自立基板16は、酸素濃度を、例えば、2.5×1017atom/cmを超え2.0×1019atom/cm以下とする。続いて、前記窒化アルミニウム単結晶自立基板16の温度を1400〜1900℃の範囲に制御し、かつ、該窒化アルミニウム単結晶自立基板16の窒素極性を有する面14上に、ハロゲン化アルミニウムガス、および窒素源ガスを供給し、窒化アルミニウム単結晶層17を成長させて積層体18を製造し、該窒化アルミニウム単結晶自立基板16を分離することにより、窒化アルミニウム単結晶基板19を製造する。 (もっと読む)


【課題】 反りが少なくクラックが発生しない導電性の窒化物半導体結晶基板及びその製造方法を提供する。
【解決手段】 下地基板の上に、幅或いは直径sが10μm〜100μmであるドット被覆部或いはストライプ被覆部を間隔wが250μm〜10000μmであるように並べたマスクを形成し、HVPE法によって成長温度が1040℃〜1150℃であって、5/3族比bが1〜10であるような3族、5族原料ガスと、Siを含むガスとを供給することによって下地基板の上に窒化物半導体結晶を成長させ、下地基板を除去することによって、比抵抗rが0.0015Ωcm≦r≦0.01Ωcm、厚みが100μm以上、反りの曲率半径Uが3.5m≦U≦8mの自立した導電性窒化物半導体基板を得る。 (もっと読む)


【課題】基板上に結晶欠陥の少ない、単結晶性及び平坦性に優れた酸化亜鉛を成長する方法を提供する。
【解決手段】MOCVD法により酸素を含まない有機金属化合物と水蒸気を用い、成長温度が250℃から450℃の範囲内で、かつ、成長圧力が1kPaから30kPaの範囲内であって、酸素原子を含まない有機亜鉛化合物材料と水蒸気とを少なくとも含む材料ガスを基板10に吹き付けて酸化亜鉛の単結晶層11を成長させる。ZnO結晶層11の成長後、ZnO結晶層11の結晶性および平坦性の向上を目的として、ZnO結晶層11を1kPaから30kPaの圧力下で、700℃から1100℃の温度範囲内で熱処理を行う。熱処理は水蒸気雰囲気下で行うことが好ましい。 (もっと読む)


【課題】ダイヤモンド微粉末を成膜前処理に用いても、凝集なく、高密度にかつ均一に基材表面に分散する方法を示し、ダイヤモンド成長後の表面が十分平滑で異常成長なく、かつ基材との密着性の高いダイヤモンド膜の製造方法を提供する。
【解決手段】基材1上に形成されたダイヤモンド膜2であって、ダイヤモンド膜2の平均膜厚6の値の3/4以上の横方向差し渡しサイズ5を有する突起部4で定義される、膜2の成長面の異常成長ダイヤモンド突起部4が、1cm当たり100個以下であるダイヤモンド膜2。ダイヤモンド膜2は、立方晶ダイヤモンドと六方晶ダイヤモンドとを含むダイヤモンド粉末を用意する工程と、ダイヤモンド粉末を液体溶媒中で撹拌する工程と、ダイヤモンド粉末を撹拌したダイヤモンド分散液中で基材1表面にダイヤモンドを種付け処理する工程とを備え、しかる後に基材1上に化学的気相合成法により製造される。 (もっと読む)


【課題】3族窒化物単結晶体が成長して厚くなっても、簡単に割れることなく、高品質な状態で単結晶体の成長を連続的に行うことができる窒化物体の製造方法を提供する。
【解決手段】気相成長法によって3族窒化物単結晶体3bを種基板3aに連続的に成長させて単結晶体3bをバルク状に作製する3族窒化物単結晶体の製造方法であって、結晶成長のために外部から印加する制御温度を、成長させる単結晶体3bの厚みの増加に応じて上昇させる。なお、気相成長法はハイドライド気相成長法である。 (もっと読む)


【課題】主面がm面とわずかなオフ角を有するIII族窒化物系化合物半導体の製造。
【解決手段】サファイア基板10に凹凸を設けて、c面又はc面と成す角が20度以下の側面のうちの法線ベクトルの向きが同じ面10c−1のみを露出させ、他の面はSiO2から成るエピ成長マスク20で覆う(3.A)。GaN層30が成長を開始してから(3.B)、溝部を埋める迄(3.C)は、常圧で、V/III比を高く保った。溝部が埋まり、凸部の上面がほぼ覆われて平坦化する(3.D)までは、減圧で、V/III比を低く(アンモニアの供給量を1/5と)した。凸部の上面がほぼ覆われて平坦化した後(3.E)は、常圧で、V/III比を高くした(アンモニアの供給量を元に戻した)。こうして、主面が、m面とわずかなオフ角を成す平坦な面であるGaN膜が形成できた。 (もっと読む)


【課題】結晶基板の表面にシリコンカーバイドの単結晶薄膜を均一なドーピング濃度と膜厚で成膜することのできる単結晶成膜方法を提供する。
【解決手段】縦型反応器12内に設けられた支持台16上に結晶基板18を配置し、支持台16を回転させながら結晶基板18の中央部に、中央部導入口20aよりシリコン原料ガスとカーボン原料ガスとドーパントガスとキャリアガスとを混合した反応ガス22を導入するとともに、結晶基板18の外周部にも、外周部導入口20bより前記反応ガス22を導入し、前記結晶基板の表面にシリコンカーバイドの単結晶薄膜を成膜する単結晶成膜方法において、前記中央部導入口20aより導入される反応ガスと前記外周部導入口20bより導入される反応ガスのC/Si比の値を、それぞれに異ならせて設定することにより、単結晶薄膜の膜厚やドーピング濃度のばらつきを防止することができる。 (もっと読む)


【課題】大量のナノロッド及び基体表面に整列されたナノロッドのいずれをも製造することが可能な方法を提供すること。
【解決手段】金属酸化物ナノロッドの製造方法は、炉6内において金属蒸気を発生させる工程と、炉内の成長領域内において、ナノロッド成長用基体22の表面上に金属酸化物ナノロッドが形成されるのに十分な時間だけナノロッド成長用基体22を金属蒸気に曝す工程と、ナノロッド成長用基体22を成長領域から除去する工程と、このように形成された金属酸化物ナノロッドであって、その直径が1nmから200nmの金属酸化物ナノロッドを収集する工程とからなる。 (もっと読む)


【課題】ターンオン電界の低減、電流密度の向上、電子放出の均一化を達成できるナノワイヤ構造体およびその製造方法を提供する。
【解決手段】酸化ガリウム単結晶基板上に、NiまたはPtからなる触媒層を形成し、前記触媒層上でトリメチルガリウムおよびアンモニアをCVD法により850〜1000℃の温度範囲で反応させ、径が5nm〜200nm、長さが5μm〜50μmのワイヤ状の形態をした窒化ガリウムナノワイヤを形成する。 (もっと読む)


【課題】ウルツ鉱型窒化ホウ素の単結晶薄膜構造およびその製造方法を提供すること。
【解決手段】ウルツ鉱型窒化ホウ素の単結晶薄膜構造300は、c軸の格子定数が6.66オングストローム未満であるウルツ鉱型の結晶構造を有する基板301であって、主方位面301Aが(0001)面から±10度以内のオフ角であり、基板301の主方位面301A上に複数の穴301Bを有する基板301と、基板301の主方位面301Aの複数の穴301Bを除く部分を覆うアモルファス構造のマスク302と、マスク302上のウルツ鉱型窒化ホウ素の単結晶薄膜303であって、基板301の複数の穴301Bを充填する単結晶薄膜303とを備える。 (もっと読む)


化学気相蒸着による単結晶ダイヤモンドの形成方法であって、(a)少なくとも一つのダイヤモンドのシードを提供すること、(b)ダイヤモンドを成長させるための炭素含有ガスおよび水素と、窒素含有ガスとを含む反応ガスを供給することを含む、化学気相蒸着によりダイヤモンドを成長させるための条件にシードを曝露すること、(c)ダイヤモンドが、内包物なしに欠陥のないステップを有するように、ステップ成長できるように、反応ガス中の他のガスに対する窒素含有ガスの量を制御することを含む、方法。窒素は、0.0001〜0.02体積%の範囲に存在する。ジボランは、0.00002〜0.002体積%の範囲に存在することもできる。炭素含有ガスは、メタンであり得る。
(もっと読む)


61 - 80 / 205