説明

Fターム[4G077TA07]の内容

結晶、結晶のための後処理 (61,211) | CVD (1,448) | 成長工程 (330) | 成長条件の特定(例;温度、圧力) (205)

Fターム[4G077TA07]に分類される特許

41 - 60 / 205


【課題】 半導体結晶材料の作製またはこの半導体結晶材料を含む構造を提供する。
【解決手段】 第1の半導体結晶材料の表面の粗さは、低減されている。半導体デバイスは、第1の結晶材料の表面上に低欠陥の歪んだ第2の半導体結晶材料を含む。歪んだ第2の半導体結晶材料の表面の粗さは、低減されている。一実施例は、第1および第2の半導体結晶材料間の界面境界の不純物を減少させるプロセスパラメータを作成することによって、粗さが低減された表面を得ることを含む。一実施の形態では、第1の半導体結晶材料は、アスペクト比トラッピング技術を用いて欠陥をトラップするのに十分なアスペクト比を有する絶縁体の開口によって限定されることができる。 (もっと読む)


【課題】ウェハの全面にステップバンチングがない、ステップバンチングフリーのSiCエピタキシャルウェハ及びその製造方法を提供する。
【解決手段】本発明の炭化珪素半導体装置の製造方法は、5°以下のオフ角で傾斜させた4H−SiC単結晶基板を、その表面の格子乱れ層が3nm以下となるまで研磨する工程と、水素雰囲気下で、研磨後の基板を1400〜1600℃にしてその表面を清浄化する工程と、清浄化後の基板の表面に、炭化珪素のエピタキシャル成長に必要とされる量のSiHガスとCガスとを濃度比C/Siが0.7〜1.2で同時に供給して炭化珪素をエピタキシャル成長させる工程と、SiHガスとCガスの供給を同時に停止し、SiHガスとCガスとを排気するまで基板温度を保持し、その後降温する工程と、を備えたことを特徴とする。 (もっと読む)


【課題】{0001}以外の面方位の主面を有する結晶性の高いIII族窒化物結晶を高い結晶成長速度で成長させるIII族窒化物結晶の製造方法を提供する。
【解決手段】本III族窒化物結晶の製造方法は、III族窒化物バルク結晶1から、{20−21}、{20−2−1}、{22−41}および{22−4−1}からなる群から選ばれるいずれかの結晶幾何学的に等価な面方位に対するオフ角が5°以下の面方位を有する主面10pm,10qmを有する複数のIII族窒化物結晶基板10p,10qを切り出す工程と、基板10p,10qの主面10pm,10qmが互いに平行で、かつ、基板10p,10qの[0001]方向が同一になるように、横方向に基板10p,10qを互いに隣接させて配置する工程と、基板10p,10qの主面10pm,10qm上にIII族窒化物結晶20を成長させる工程と、を含む。 (もっと読む)


【課題】転位密度が低く、かつ、不純物の濃度が低いIII族窒化物結晶の製造方法、III族窒化物結晶基板およびIII族窒化物半導体デバイスを提供する。
【解決手段】本III族窒化物結晶の製造方法は、液相法により第1のIII族窒化物結晶10を成長させる工程と、第1のIII族窒化物結晶10の表面を、表面粗さRaが5nm以下かつ反りの曲率半径が2m以上になるように加工する工程と、加工がされた第1のIII族窒化物結晶10上に気相法により第2のIII族窒化物結晶20を成長させる工程と、を含む。 (もっと読む)


【課題】 サファイア基板上又はSi基板上に良質のAlN結晶を高速成長させることができるAlNのエピタキシャル成長方法を提供することを目的とする。
【解決手段】
第一ガス導入ポート12から、HCl+Hを導入し750℃以下でAl金属とHClを反応させAlClを生成する。第二ガス導入ポート14からNH+Hを導入し混合部でNHとAlClとを混合させる。混合したガスを基板部に輸送し反応させAlNを生成する。混合部は原料反応部で生成されたAlClの石英反応チャンバー18内での析出が起きない温度で、かつ、混合部でのAlNの析出が起きない温度範囲80℃以上750℃以下に保つ。基板結晶24は、高周波加熱によって900℃から1700℃に維持される。この結果、基板結晶24への途中でAlNが析出してしまうことを防止し、AlNエピタキシャル成長速度が向上する。 (もっと読む)


【課題】非常に高い温度に耐えられない分野で使用可能であり、その実施に関する熱負荷の低下にも寄与し、450℃未満の温度で行なわれ、触媒の構成元素のためにナノワイヤの不純物をもたらさず、結晶性に関して組織され、欠陥をほとんど有しないシリコン及び/又はゲルマニウムナノワイヤを組み立てる方法を提供する。
【解決手段】生じるナノワイヤの成長によって基板上にシリコン及び/又はゲルマニウムのナノワイヤを組み立てる方法であって、シリコンを含む前駆体とゲルマニウムを含む前駆体とを、前記基板に存在する酸化銅を含む化合物と接触させることを含む方法。 (もっと読む)


【課題】高結晶性、高純度で制御された形状を有し、基板と一定の方向を有する単結晶貴金属ナノワイヤの製造方法の提供。
【解決手段】ハロゲン化貴金属である前駆物質を反応炉の前端部に位置させて、前駆物質の温度を制御し、単結晶基板を反応炉の後端に位置させ、一定な圧力下で、前記反応炉の前端部から前記反応炉の後端部に不活性気体が流れる条件で、前記単結晶基板上に前記単結晶基板とエピタキシャル関係を有するツインフリー単結晶体の貴金属ナノワイヤを製造する。 (もっと読む)


【課題】CVD法を用いたカーボンナノチューブの製造工程において、成長基板における温度分布の不均一性を改善する技術を提供する。
【解決手段】流体を流すための多孔質流路層15と、多孔質流路層15を狭持し、水素を選択的に透過する第1と第2の電極層11,12とを備える成長用基板10を準備する。成長用基板10の第1の電極層11側の外表面に、カーボンナノチューブの生成を促進させるための触媒金属20を担持させる。第1の電極層11には、原料ガスを供給してカーボンナノチューブを成長させるとともに、多孔質流路層15にプロトン伝導性を有するイオン性液体を流しつつ、第1と第2の電極層11,12の間に、第1の電極層11側を陽極として電圧を印加する。これによって、第1の電極層11側における副産物である水素を第2の電極層12側へと移動させる。 (もっと読む)


【課題】III族窒化物半導体の複数の半導体部材を成長させる際におけるクラックの発生を低減する。
【解決手段】半導体デバイスの製造方法は、金属層形成工程と、前記金属層をそれぞれ露出する複数の開口グループと前記金属層を露出しない第1の非開口部と前記金属層をそれぞれ露出しない複数の第2の非開口部とを含むマスクを形成するマスク形成工程と、窒化工程と、第2バッファー層形成工程と、成長工程とを備え、前記開口グループは、六角形に沿った形状をそれぞれ有した複数の開口を含み、前記第1の非開口部は、前記複数の開口グループの間に配され、前記第2の非開口部は、前記開口グループ内の前記複数の開口の間に配され、前記マスク形成工程では、各開口グループ内の各開口の最小幅が5μm以上25μm以下になり、各開口グループ内の隣接する前記開口の間における前記第2の非開口部の幅が1.5μm以上8μm以下になり、隣接する前記開口グループの間における前記第1の非開口部の幅が10μm以上になるように、前記マスクを形成する。 (もっと読む)


本発明は、原則的に石英ピースから成るエピタキシャル反応器の反応室に関する;石英ピースは、壁(1A、1B、1C、1D)によって規定される内部空洞(2)を持つ石英ピースの部分(1)を備える;空洞(2)は、エピタキシャル反応器の反応沈着ゾーン(3)を備える;ゾーン(3)は、そこで熱せられるサセプター(4)を収容するように適合している;反応室は、対抗壁を形成し前記ゾーン(3)の壁となるように、前記壁(1A、1B、1C、1D)に隣接して配置される石英の部品(5)も備える。
(もっと読む)


【課題】III族窒化物半導体の結晶体を成長させる際におけるクラックの発生を低減する。
【解決手段】半導体基板の製造方法は、下地基板の上に金属層を形成する金属層形成工程と、前記金属層をそれぞれ露出する複数の開口と前記金属層を露出しない非開口部とを含むマスクを形成するマスク形成工程と、前記金属層において前記複数の開口により露出された複数の領域を窒化することにより、金属窒化物の複数の第1バッファー層を形成する窒化工程と、前記複数の第1バッファー層の上に、III族窒化物半導体の複数の第2バッファー層を形成する第2バッファー層形成工程と、前記複数の第2バッファー層の上に、III族窒化物半導体の結晶体を成長させる成長工程とを備え、前記複数の開口のそれぞれは、六角形に沿った形状を有しており、前記マスク形成工程では、前記複数の開口における各開口の最小幅が5μm以上25μm以下となり隣接する前記開口の間における前記非開口部の幅が1.5μm以上8μm以下になるように、前記マスクを形成する。 (もっと読む)


【課題】異種基板上へZnO系半導体結晶を高温で成長可能なヘテロエピタキシャル成長方法、ヘテロエピタキシャル結晶構造、ヘテロエピタキシャル結晶装置および半導体装置を提供する。
【解決手段】異種基板40上に酸化物または窒化物の配向膜からなるバッファ層42を形成する工程と、バッファ層上にハロゲン化II族金属と酸素原料を用いて、ZnO系半導体層44,46を結晶成長する工程とを有するヘテロエピタキシャル成長方法、ヘテロエピタキシャル結晶構造、ヘテロエピタキシャル結晶装置および半導体装置。 (もっと読む)


【課題】アンモニアを窒化源として用いることができ、かつ、大量のアンモニアを用いることなく、既存のMOCVD(MOVPE)装置に簡単な改良を施すだけで高品質のIn系III族元素の窒化物を製造することができるIn系III族元素窒化物の製造方法を提供する。
【解決手段】アンモニアを分解してIn系III族元素に供給し、In系III族元素窒化物を製造するIn系III族元素窒化物の製造方法において、前記アンモニア4を触媒6によって分解する。前記触媒とともに又は前記触媒として、水素吸収性を有する材料を用いてもよい。In系III族元素窒化物がInNである場合には、InNの成長温度を500℃〜600℃とするとよい。 (もっと読む)


【課題】本発明は、基板の反りを抑制し、界面反射の影響を低減して高光取り出し効率と高内部発光効率とを実現できる半導体素子、半導体装置、半導体ウェーハ及び半導体結晶の成長方法を提供する。
【解決手段】c面からなる主面106を有し、主面に凹部110aが設けられたサファイア基板105と、サファイア基板の主面の上に設けられ、結晶性のAlNからなる第1バッファ層110と、第1バッファ層の上に設けられ、窒化物半導体からなる半導体層190と、を備えた半導体素子が提供される。第1バッファ層は、サファイア基板の凹部の上に設けられた空洞110aを有し、第1バッファ層は、第1領域110eと、第1領域とサファイア基板との間に設けられ第1領域よりも炭素濃度が高い第2領域110fと、を有する。 (もっと読む)


【課題】大面積で均一な低転位密度窒化ガリウムおよびその製造プロセスを提供する。
【解決手段】15cmを超える大面積と、少なくとも1mmの厚さと、5E5cm−2を超えない平均転位密度と、25%未満の転位密度標準偏差比率と、を有する大面積で均一な低転位密度単結晶III−V族窒化物材料、たとえば窒化ガリウム。かかる材料は、(I)たとえばIII−V族窒化物材料の成長表面の少なくとも50%にわたってピットを形成するピット化成長条件下で、III−V族窒化物材料を基板上に成長させる第1段階であって、成長表面上のピット密度が、成長表面において少なくとも10ピット/cmである段階と、(II)ピット充填条件下でIII−V族窒化物材料を成長させる第2段階と、を含むプロセスによって基板上に形成することができる。 (もっと読む)


【課題】充分な電子デバイス特性が得ることのできる高品質な基板用GaN系半導体自立基板を提供する。
【解決手段】GaN系半導体からなる自立基板であって、前記自立基板の表面に直接Niを金属電極としてショットキーダイオードを形成した場合、電流−電圧特性における理想因子n値が1以上1.3以下となることを特徴とする自立基板。好ましくは、前記ショットキーダイオードを形成した場合、逆方向電圧−5V印加時の電流値が、熱電界放出モデルおよび熱電子放出モデルの計算値の和として計算した理論電流値の50倍以下となることを特徴とする自立基板。 (もっと読む)


【課題】結晶性、表面平坦性に優れた非極性面や半極性面を主面とするIII 族窒化物半導体を製造すること。
【解決手段】a面サファイア基板10の表面10aに、ICPエッチングで長手方向がサファイア基板10のm軸方向に平行なストライプ状に凹部11を形成する(図1(a))。次に、サファイア基板10をMOCVD装置に搬入し、水素とアンモニアを含む雰囲気中で、1020〜1060℃まで昇温する。続いて、凹部11の側面11aにGaN結晶13をエピタキシャル成長させる(図1(b))。成長が進むと、サファイア基板10の表面10aはGaN結晶13に覆われていき、平坦なGaN結晶13が形成される(図1(c))。このGaN結晶13の主面はm面である。 (もっと読む)


【課題】原料ガスの収率を向上させられるようにする。
【解決手段】第1〜第3反応容器9〜11を多段に配置すると共に、第2、第3反応容器10、11の底面にガス流動孔10b、11bを設けることにより、多段にわたって原料ガス3が供給されるようにし、多段それぞれに配置された複数の種結晶5の表面にSiC単結晶6を成長させられるようにする。これにより、原料ガス3をより効率良く再結晶化させることが可能となり、原料ガス3の収率を高めることが可能となる。 (もっと読む)


【課題】結晶性、表面平坦性に優れた非極性面や半極性面を主面とするIII 族窒化物半導体を製造すること。
【解決手段】a面サファイア基板10の表面10aに、ICPエッチングで長手方向がサファイア基板10のm軸方向に平行なストライプ状に凹部11を形成する(図1(a))。次に、サファイア基板10を、反応性マグネトロンスパッタに導入し、厚さ75〜125ÅのAlN膜12を形成する(図1(b))。次に、サファイア基板10をMOCVD装置に搬入し、水素とアンモニアを含む雰囲気中で、1020〜1060℃まで昇温する。続いて、凹部11の側面11aにGaN結晶13をエピタキシャル成長させる(図1(c))。成長が進むと、サファイア基板10の表面10aはGaN結晶13に覆われていき、平坦なGaN結晶13が形成される(図1(d))。このGaN結晶13の主面はm面である。 (もっと読む)


【課題】ELOG法を用いて形成された開口面積の大きい空洞を半導体層内部に導入することにより成長用基板をウェットエッチング処理または外力印加によって容易に剥離することができる半導体素子の製造方法を提供する。
【解決手段】
成長用基板上を部分的に覆う選択成長用のマスクを成長用基板上に形成する。次に、成長用基板上のマスクで覆われていない非マスク部において、マスクの膜厚よりも厚い緩衝層を成長させた後、緩衝層の表面に所定のファセットを表出させる。次に、緩衝層を起点として半導体膜を横方向成長させてマスク上部に空洞を形成しつつマスクを覆う横方向成長層を形成する。横方向成長層の上にデバイス機能層をエピタキシャル成長させる。空洞形成工程は、互いに異なる成長速度で半導体膜の成長を行う第1ステップおよび第2ステップを交互に複数回実施する。 (もっと読む)


41 - 60 / 205