説明

Fターム[4K001DB09]の内容

金属の製造又は精製 (22,607) | 湿式製錬 (3,083) | 浸出 (1,381) | アンモン(塩) (29)

Fターム[4K001DB09]に分類される特許

1 - 20 / 29


【課題】ガリウムイオンを含む溶液を電解して金属ガリウムを得る金属ガリウムの電解採取方法に関し、電解時間をより一層短縮する方法を提供する。
【解決手段】ガリウムイオンを含有する溶液を電解液として電解することにより、陰極にガリウムを電着させて金属ガリウムを得るガリウムの電解採取方法において、電解液としてのガリウムイオン含有溶液の温度を、冷却機器などを使用して、ガリウムの融点(29.8℃)未満に制御しつつ電解を行うことで、電解時間を大幅に短縮することができる。 (もっと読む)


【課題】モリブデンとコバルトの両方を良好な回収率で纏めて回収することができるモリブデン及びコバルトの回収方法と、該方法により回収したモリブデン及びコバルトを原料とした複合酸化物等の製造方法とを提供する。
【解決手段】モリブデン及びコバルトの回収方法は、モリブデン及びコバルトを含有する複合酸化物と、セラミックス成形体と、アンモニア及び有機塩基の少なくとも一方が水に溶解してなる抽出用水溶液とを混合することにより、該複合酸化物からモリブデン及びコバルトを水相に抽出させる。複合酸化物の製造方法は、前記モリブデン及びコバルトを含有する水相を乾燥した後、焼成する。 (もっと読む)


【課題】銅及び錫を含有し、鉛を主体とする金属混合物から、粗鉛、粗銅及び粗錫をそれぞれ容易かつ効率良く、しかも安全に分離回収できる方法を提案する。
【解決手段】銅及び錫を含有し、鉛を主体とする金属混合物を加熱して溶融し、この溶湯に水酸化ナトリウムを添加すると共に攪拌して錫のナトリウム塩を形成させ、該錫のナトリウム塩及び銅を含有する脱銅ハリス滓を回収すると共に、残部としての粗鉛を回収し、前記脱銅ハリス滓を水に投入して錫を水に溶解させ、固液分離することにより、溶液に溶解している錫と、非溶解物としての銅を分離するようにして、粗鉛、粗銅及び粗錫を得ることを特徴とする、有価金属の製造方法を提案する。 (もっと読む)




【課題】銅含有被処理物から銅を容易に、かつ短時間で回収することができる方法を提供すること。
【解決手段】難溶性の酸素非含有銅化合物を含む被処理物を気相酸化して、該酸素非含有銅化合物から金属銅又は酸化銅若しくは亜酸化銅を生成させる。次いで気相酸化処理後の該被処理物に硫酸又はアンモニアを含む水溶液を作用させて、銅を可溶性塩の形態となして回収する。被処理物としては、例えば鉛製錬で生じる含銅ドロス若しくはマット、銅を含む鉛鉱石又は銅を含む硫化鉛などが用いられる。酸素非含有銅化合物は、Cuと、Sn、Sb、S及びSeから選択される少なくとも1種の元素との化合物であることが好適である。 (もっと読む)


【課題】経済性に優れた金属回収方法を提供することを課題とする。
【解決手段】次の工程を経て金属を回収する。
(1)鉄還元細菌により3価鉄イオンを2価鉄イオンに還元し、該2価鉄イオンにより、目的金属と鉄イオンを含み被処理物と浸出液との混合物である浸出スラリを生成する浸出工程。
(2)浸出スラリを、目的金属含有浸出液と、残渣とに固液分離する固液分離工程。
(3)吸着剤に目的金属含有浸出液中の目的金属を吸着させるとともに、鉄イオン含有浸出液を得る吸着分離工程。
(4)目的金属を吸着した吸着剤に溶離液を通液し目的金属を含む目的金属濃縮溶液を得る溶離工程。
(5)目的金属濃縮溶液から目的金属を回収する金属回収工程。
(6)吸着分離工程において得た鉄イオン含有浸出液を浸出工程における浸出液の一部として再利用する浸出液再利用工程。 (もっと読む)


【課題】酸性又はアンモニア性水溶液から有価金属を抽出する方法を提供する。
【解決手段】溶媒抽出用組成物は、一つ又はそれ以上のオルトヒドロキシアリールアルドキシム或いはオルトヒドロキシアリールケトキシム及び一つ又はそれ以上の、ヒドロキシル基で置換されたエステル、並びに好ましくは水非混和性有機溶媒を含む。オルトヒドロキシアリールアルドキシム又はオルトヒドロキシアリールケトキシムは、一般的に以下の式(1):


を有し、式中、R1は水素又はヒドロカルビル基であり、そしてR2はオルト−ヒドロキシアリール基である。 (もっと読む)


【課題】 モリブデンとコバルトとの両方を良好な回収率で纏めて回収することができるモリブデン及びコバルトの回収方法と、該方法により回収したモリブデン及びコバルトを原料とした複合酸化物等の製造方法とを提供する。
【解決手段】 モリブデン及びコバルトの回収方法は、モリブデン及びコバルトを含有する複合酸化物を、アンモニア及び有機塩基の少なくとも一方が水に溶解してなる抽出用水溶液と混合することにより、該複合酸化物からモリブデン及びコバルトを水相に抽出させる。複合酸化物の製造方法は、前記モリブデン及びコバルトを含有する水相を乾燥した後、焼成する。 (もっと読む)


【課題】 新規な鉛再生方法を提供する。
【解決手段】 (a)酢酸ナトリウム、酢酸カリウム又は酢酸アンモニウム水溶液に不純鉛含有材料を懸濁させ、(b)この懸濁液に、全鉛酸化物をアセテート塩溶液に可溶性の硫酸鉛に変換させるのに十分な量の硫酸を添加し、かつ、この懸濁液に、全二酸化鉛を、硫酸により最終的に可溶性硫酸鉛に変換される酸化鉛に変換するのに適合する、過酸化水素又は亜硫酸塩の何れかを徐々に添加するか、又はこの懸濁液中に無水亜硫酸を吹き込み、(c)溶解された硫酸鉛を含有する明澄なアセテート塩溶液を、全ての未溶解化合物及び不純物を含有する固相残留物から分離し、(d)高純度の炭酸鉛/オキシ炭酸鉛又は酸化鉛若しくは水酸化鉛をそれぞれ沈殿させ、一方、アセテート塩溶液に可溶性のカチオンの硫酸塩を生成させるために、硫酸鉛の分離溶液に、硫酸鉛溶解性溶液のアセテート塩と同じカチオンの炭酸塩又は水酸化物の何れかを添加し、(e)アセテート塩と同じカチオンの硫酸塩も含有するアセテート塩溶液から、沈殿高純度鉛化合物を分離することからなる鉛再生方法。 (もっと読む)


【課題】廃電子材料や廃電子機器に含まれる金、パラジウム、白金等の貴金属、特に金を高選択的に回収することができる抽出剤及び、使用済み液晶パネルや亜鉛精錬残渣等に含まれるインジウム及びガリウムを効率的に回収もしくは相互分離することができる抽出剤を提供する。
【解決手段】抽出剤は、式(I)


(式中、Rは炭素数6〜18の直鎖状又は分岐状の脂肪族炭化水素基である)で表されるプロリン誘導体又はその塩を含む。Rは、炭素数10〜18の直鎖状アルキル基であることが好ましい。 (もっと読む)


【課題】235Uを濃縮する技術を提供する。
【解決手段】235Uと他のウラン同位体のフルオロウラネートアニオンあるいはオキソフルオロウラネートアニオンとイオン液体性カチオンから構成されるイオン液体を含む電解液を用いて電気分解を行い、235Uのフルオロウラネートアニオンあるいはオキソフルオロウラネートアニオンを濃縮することを特徴とする、235Uに富むフルオロウラネートアニオンあるいはオキソフルオロウラネートアニオンの製造方法。 (もっと読む)


【課題】 本発明の目的は、磁気分離法を用いて、工程が効率的で、かつ経済的に優れた製鉄ダストの低亜鉛化方法を提供することにある。
【解決手段】 本発明の製鉄ダストの低亜鉛化方法は、鉄および亜鉛を含む製鉄ダストに浸出液を加えて1次スラリーとし、前記製鉄ダスト中に含まれる亜鉛を溶解させる亜鉛溶出工程と、前記1次スラリーを、磁気分離法を用いて、低亜鉛化磁着物と、高亜鉛化非磁着物を含む2次スラリーとに分離する磁気分離工程と、前記分離された低亜鉛化磁着物を、脱水・洗浄することにより、製鉄原料として回収する製鉄原料回収工程とを具えることを特徴とする。 (もっと読む)


本発明は、以下の工程を含む、炭酸カルシウムの製造方法に関する:弱酸および弱塩基から生成される塩の水溶液を第一抽出溶媒として使用して、産業上のアルカリ性の廃棄物または副生物を抽出することにより、バナジウムに富む第一残留物を沈降させると共に、カルシウムに富む第一濾液を生成させ;該第一濾液を該第一残留物から濾過により分離し;炭酸塩化ガスを使用して、カルシウムに富む該第一濾液を炭酸塩化することにより、炭酸カルシウム沈殿物と第二濾液とを生成させ;および該炭酸カルシウムを該第二濾液から2回目の濾過により分離する。さらに、本発明は、産業上のアルカリ性の廃棄物または副生物から炭酸カルシウムとバナジウムを抽出する方法に関する。
(もっと読む)


【課題】従来の湿式法に比べて、工程が効率的で、かつ経済的に優れた製鉄ダストの亜鉛回収方法を提供することにある。
【解決手段】亜鉛溶出工程と、固液分離工程と、亜鉛回収工程とを具え、前記亜鉛回収工程はキレート塔等のキレート30を具えた設備に、前記溶出液21を通過させることことで、キレート30を前記溶出液21に接触させて、前記溶出液21中の亜鉛を、亜鉛アンモニア錯イオンから、亜鉛キレート錯体を経て、亜鉛単独イオンに変換させることを特徴とする。 (もっと読む)


本発明は、以下の操作工程を含む、脱硫された鉛パステルから出発した、金属鉛を製造するための電気分解的方法に関する。
a)脱硫したパステルを、塩化アンモニウムを含む溶液と接触させることにより脱硫したパステルを溶脱し、溶脱液体を形成させ及びCO2ガスを発生させる工程、
b)第一の固形物残渣と第一の浄化された溶脱液体を、工程a)からの溶脱液体から分離する工程、
c)塩化アンモニウム及び過酸化水素を含む溶液と接触させることにより、工程b)において分離された固形物残渣を溶脱する工程、
d)第2の固形物残渣及び第2の浄化された溶脱液体を、工程c)からの溶脱液体から分離する工程、
e)工程b)からの第1の浄化された溶脱液体と、工程d)からの第2の浄化された溶脱液体とを合わせて、単一の溶液を形成する工程、
f)工程e)を離れた溶液を、50〜10,000A/m2の範囲の電流密度を用いて、フローセル中で電気分解させ、前記電気分解が鉛スポンジをもたらす工程。本発明は、パステルの相対的な脱硫方法にも関する。 (もっと読む)


【課題】 ロジウムおよび他の不純物金属を含有する水溶液から、ロジウムを白金族と白金族以外の不純物から確実に分離し、その際の分離効率を改善するロジウムの精製方法を提供する。
【解決手段】
水溶液中のロジウムを選択的に結晶化分離する方法であって、下記の(1)〜(6)の工程からなる。(1)炭酸アンモニウムおよび塩化アンモニウムを添加する。(2)二酸化炭素の発生が終了するまで、塩酸を添加後、生成した結晶を分離する。(3)前記結晶を水酸化ナトリウム水溶液に溶解し、加熱する。(4)前記浸出に炭酸水素ナトリウムを添加し、pHを9.9〜10.7に調整後、発生した沈殿と母液とを分離する。(5)前記母液にpHが1以下になるまで塩酸を加え、(1)〜(2)の工程の処理を行い、ロジウムを含む結晶を回収する。(6)前記工程で得られたロジウムを含む結晶を、水中で加熱、冷却を行い再結晶させる。 (もっと読む)


本発明は、純度がP1の低等級な多価カチオンフィード流を、純度がP2の多価カチオン複塩沈殿物及び純度がP3の多価カチオン溶液を形成させることにより産業的に精製する方法であって、P2>P1>P3である方法を提供する。当該方法は、a)上記フィードから、水と、多価カチオンと、アンモニウム、複数種のアルカリ金属のカチオン、陽子、及びこれらの組み合わせからなる群から選択されるカチオンと、複数種のアニオンとを含む溶剤を形成する工程であって、形成された溶剤は、さらに、(i)多価カチオンと、上記カチオンのうち少なくとも一種と、上記アニオンのうち少なくとも一種とを含む複塩沈殿物、及び(ii)多価カチオン溶液、の存在により特徴付けられ、上記アニオンの濃度が10%より高く、上記多価カチオン溶液における上記アニオンの濃度に対する上記カチオンの濃度の比率が、明細書に定義する区間DS内に存在する工程、及びb)上記溶液から上記沈殿物の少なくとも一部を分離する工程、を含む。 (もっと読む)


【課題】 廃棄された鉛バッテリの電極ペースト鉛成分を、極高純度の炭酸鉛又はオキシ炭酸鉛へ変換する湿式冶金法を提供する
【解決手段】 本発明の方法は、(x)出発材料に含まれる二酸化鉛を還元し、酸浸出溶液中で、酸化鉛と他の可溶性の化合物又は物質を溶解するステップを有する。前記浸出酸は、酢酸、硝酸、フルオロ硼酸、フルオロ珪酸からなるグループに属し、以下のステップを更に含む。(a)硫酸を、不純物を含む出発材料の酸浸出懸濁液に添加するステップと、(b)硫酸鉛と非溶解の不純物からなる固相を、前記酸浸出溶液から分離するステップと、(c)前記の分離した固相内に含まれる硫酸鉛を、少なくとも溶融化化合物を含む水溶液中で、選択的に分解するステップと、(d)溶解した硫酸鉛を含む溶液を、非溶解性の不純物を含む固相残留物から分離するステップと、(e)硫酸鉛の分離した溶液に、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムを添加するステップと、(f) 沈殿した炭酸鉛又は酸化炭酸鉛を、可溶化溶液から分離するステップとを含む。 (もっと読む)


浸出廃液からのコバルトおよびニッケルの選択的回収におけるイオン交換樹脂を用いた複合プロセスを対象としている。このプロセスは、ラテライト鉱(M)を処理(1)する工程と、前記ラテライト鉱(M)を(大気中または加圧下で)浸出処理する工程(2)と、を有し、既に稼働中の既存のプラントの固液分離工程からの溶液(2)も可能である。下流のプロセスは、イオン交換複合回路を有し、樹脂(Re)による第1イオン交換工程(3)は、鉄、アルミニウムおよび銅を除去し、pHを上げるための特定の選択性条件を示し、第2イオン交換工程(4)は、ニッケルおよびコバルトの除去を可能にする。
(もっと読む)


1 - 20 / 29