説明

Fターム[4K001DB18]の内容

金属の製造又は精製 (22,607) | 湿式製錬 (3,083) | 溶液の処理 (1,653) | 金属析出 (312) | 置換析出 (83)

Fターム[4K001DB18]に分類される特許

41 - 60 / 83


【課題】In-Sn含有物からインジウムとスズを分離性よく溶解し回収する方法を提供する。
【解決手段】インジウムとスズを含有するIn-Sn含有物を硝酸浸出してインジウム含有液とスズ含有残渣とに分離し、インジウムおよび/またはスズを回収する方法において、浸出液のpHが0.7〜1.5になる硝酸濃度に制御してIn-Sn含有物を硝酸浸出することを特徴とするIn-Sn分離回収方法であり、例えば、水100gに対する70%濃度硝酸の添加量が20〜70gに相当する硝酸濃度で、In-Sn含有物を硝酸浸出するIn-Sn分離回収方法。 (もっと読む)


【課題】スズ含有物からスズと共存金属を分離性よく溶解して回収する方法を提供する。
【解決手段】スズ含有物を硝酸浸出して共存金属を溶解すると共にスズ含有残渣を分離し、該スズ含有残渣からスズを回収する方法であって、スズ含有物の硝酸溶解に酸化剤を導入することを特徴とするスズの分離回収方法であり、例えば、酸化剤として過酸化水素を用い、スズ含有物乾燥重量55gに対する35%濃度過酸化水素水の添加量が10〜35gに相当する過酸化水素を硝酸溶解時または硝酸溶解液に導入し、上記スズ含有物重量に対する70%濃度硝酸の添加量が40g以上に相当する硝酸濃度でスズ含有物を硝酸浸出するスズの分離回収方法。 (もっと読む)


【課題】インジウム亜鉛酸化物(IZO)含有スクラップから、電解精製に好適な純度を有する粗インジウムを効率よく、かつ経済的なコストで回収する方法を提供する。
【解決手段】下記の工程(イ)〜(ニ)を含むインジウム亜鉛酸化物含有スクラップから電解精製に用いる粗インジウムを回収する方法であって、前記工程(ハ)において、置換剤として、アルミニウム板を用いる。 工程(イ):粉状のインジウム亜鉛酸化物含有スクラップを塩酸で浸出し、浸出液を得る。 工程(ロ):前記浸出液に、水酸化ナトリウム水溶液を添加し、pH調整する。 工程(ハ):pH調整後の浸出液に、置換剤を浸漬し、スポンジ状インジウムを置換析出させる。 工程(ニ):前記スポンジ状インジウムに、水酸化ナトリウムを添加して融解し、粗インジウムを得る。 (もっと読む)


【課題】インジウムとスズを含む溶液からスズを簡単にかつ効率よく分離する方法を提供する。
【解決手段】インジウムとスズを含む酸性溶液にタンニン酸を添加して液中のスズを沈澱させて分離することを特徴とするインジウムとスズの分離方法であって、好ましくは、タンニン酸とスズのモル比(タンニン酸/スズ)が0.05〜4、好ましくは0.1〜3になる量のタンニン酸を添加し、さらにアルカリを添加してpH0.1〜3.5、好ましくはpH0.5〜2.5に調整してスズ含有沈殿物を生成させるインジウムとスズの分離方法。 (もっと読む)


【課題】液体と粉体を効率的に混合させる。
【解決手段】液体Lを渦状に回転させながら流下させる液体供給部3と、液体供給部2において流下する液体Lに対して粉体Pを供給する粉体供給部4と、液体供給部2から供給された液体Lを貯留する液体貯留部5とを備えた。液体供給部3には、下方に向かうに従い内径が小さくなるように形成された漏斗状面11aを設け、この漏斗状面11aの内側に向かって粉体Pを供給するようにした。漏斗状面11aの上縁部11bの周囲には、液体Lを上縁部11bに沿って通過させる液体通過路12を設けた。そして、液体通過路12内の液体Lを漏斗状面11aに向かってオーバーフローさせる構成とした。 (もっと読む)


【課題】ターゲット廃材からインジウムを分離し、ターゲット廃材の再利用を可能にするターゲット廃材とインジウムの分離回収方法を提供する。
【解決手段】表面にインジウムが付着したターゲット廃材を酸に浸漬してインジウムを溶解する工程、未溶解のターゲット廃材を回収する工程、上記インジウム溶解液に水酸化アルカリを添加してアルカリ性の液性下でインジウム水酸化物を沈殿させ、該沈澱を回収する工程を有することを特徴とし、好ましくは、回収したインジウム水酸化物を酸に溶解する工程、この酸溶解液からインジウムスポンジを回収する工程を有するターゲット廃材とインジウムの分離回収方法。 (もっと読む)


【課題】硫化銅鉱物を含む銅原料の塩素浸出工程を含む湿式銅製錬法において、該硫化銅鉱物を含む銅原料中に含有される銀を沈殿物中に濃縮して効率的に回収する方法を提供する。
【解決手段】硫化銅鉱物を含む銅原料を塩素浸出する工程を含む湿式銅製錬法において、溶媒抽出で得られる抽出残液から有価金属を分離回収する工程の際に、鉄イオンとともに銅イオン及び銀イオンを含む抽出残液に沈殿物(B)を添加し、酸化還元電位(銀/塩化銀電極規準)を100〜250mVに制御しながらセメンテーション反応に付し銀イオンを優先的に還元して沈殿物(A)として分離回収し、その後、金属鉄粉を添加し、酸化還元電位(銀/塩化銀電極規準)を−300〜0mVに制御しながらセメンテーション反応に付し銅イオンと残留する銀イオンを還元して沈殿物(B)として分離回収することを特徴とする。 (もっと読む)


【課題】インジウム含有物からのインジウム回収における、置換析出工程で置換析出するインジウムスポンジが、塊状ではなく粉体状で生成する回収方法を提供する。
【解決手段】pHを1〜2.2の範囲に調整したインジウム含有液へ塩素を含む物質を添加し、さらに還元剤を添加することでしインジウムスポンジを置換析出させる。 (もっと読む)


【課題】シアン系Au含有液に含有されるAuの分離方法、及び、シアン系Au含有液に含有されるAuの定量分析方法を比較的短時間で行うことができるようにする。さらに、作業中の安全性の向上と、排ガス処理装置の負荷の低減を図る。
【解決手段】シアン系Au含有液にアルカリ剤を添加して、アルカリ性の液とし、アルカリ性の液にZnを添加して、第一の沈殿物を生成するようにした。さらに、第一の沈殿物を王水に溶解させ、沈殿物溶解液を生成するようにした。そして、沈殿物溶解液に還元剤を添加して、第二の沈殿物を生成し、第二の沈殿物を加熱処理することにより、Auを分離させることとした。 (もっと読む)


【課題】金属製錬や産業廃棄物処理工程より発生する炭酸鉛、酸化鉛、水酸化鉛、硫酸鉛等の鉛含有物から効率よく、高純度な金属鉛を回収する方法を提供する。
【解決手段】鉛含有物を硝酸溶液にてpH1〜3、反応時間1時間以上の条件にて浸出し、濾過後、濾液中の鉛より貴な金属の不純物を除去するため、金属鉛を用いてpH2〜3の範囲にて置換反応を行い、硝酸鉛溶液から電解採取法により、アノードに二酸化鉛、カソードに金属鉛を析出させた後、アノードより二酸化鉛を剥離回収して、還元剤とともに溶融還元して金属鉛にした後、炉冷した後苛性ソーダを添加して微量不純物を取り除き、鋳造して電気鉛を得、カソードより回収した電着鉛も溶融後、同様に微量不純物を取り除き、鋳造して電気鉛を得る。 (もっと読む)


【課題】インジウム溶液からセメンテーションによって金属インジウムを回収する方法において、セメントテーションが円滑に進行して安定にスポンジインジウムを析出させることができるインジウムの回収方法を提供する。
【解決手段】インジウム溶解液に亜鉛を添加して金属インジウムを析出させた後に、さらに亜鉛に代えてアルミニウムを添加して金属インジウムを析出させることを特徴とするインジウムの回収方法であり、好ましくは、亜鉛置換によってインジウムイオン濃度が1g/L未満になるまで金属インジウムを析出させ、その後、アルミニウム置換によってインジウムイオン濃度が10mg/L未満になるまで金属インジウムを析出させ、さらに好ましくは、液中にインジウムイオンと水酸化インジウムを共存させて亜鉛置換を行うインジウムの回収方法。 (もっと読む)


【課題】塩化インジウム溶液からセメンテーションによって金属インジウムを回収する場合に、セメントテーションが円滑に進行して安定にスポンジインジウムを析出させることができるインジウムの回収方法を提供する。
【解決手段】塩化インジウム溶液に亜鉛を添加して金属インジウムを析出させる工程において、好ましくは、塩化インジウム溶液のpHを2.5〜3.5に調整して水酸化インジウムを生成させると共に液中のインジウムイオン濃度を60〜85g/Lとし、インジウムイオンと水酸化インジウムを共存させて金属インジウムを析出させることを特徴とするインジウムの回収方法。 (もっと読む)


【課題】系外(亜鉛製錬工程など)へインジウムを極力排出することのなく自工程でのインジウム実収率が高く且つ低コストのインジウム回収方法を提供する。
【解決手段】In、Cu、Cd等を含有する原料を浸出して酸浸出液を得る工程と、この液にS0を添加してCuの一部を硫化銅としたスラリーを得る1段目工程と、このスラリーに硫化剤を添加してCuの残部を硫化物として脱銅液と銅残渣を得る2段目工程と、脱銅液に硫化剤を添加して硫化物を得る硫化工程と、硫化物に酸溶液中でSO2ガスを吹き込みSO2浸出液とS0含有残渣を得るSO2浸出工程と、S0含有残渣をS0として1段目工程に繰り返す工程を有し、好ましくはさらに、SO2浸出液に亜鉛末を添加してスポンジを析出させる工程と、スポンジを浸出する工程と、浸出液に硫化剤を添加してCdを硫化物とし精製In溶液を得る工程と、精製In溶液を電解採取し高純度Inを得る工程とを有する。 (もっと読む)


【課題】インジウム含有溶液からインジウムを高い回収率で効率的且つ安価に回収するインジウムの回収方法を提供する。
【解決手段】不純物としてZn、AlおよびFeの少なくとも一種を含有するインジウム含有溶液のpHを1以上に調整し、インジウム含有溶液の温度を60℃以下、好ましくは30℃以下に保持して、このインジウム含有溶液に微量の銅化合物を添加して銅イオンを存在させるとともに、亜鉛末(Zn末)を添加して置換反応させた後に、固液分離することによってインジウムを回収する。 (もっと読む)


【課題】CdとSnを含むInスクラップからCdとSnの混入量が少ない高品位のInを効率よく回収する方法と回収Inを提供する。
【解決手段】Inスクラップを塩酸に溶解する工程(塩酸溶解工程)、この溶解液に金属Inを添加してSnを析出させて除去する工程(脱Sn工程)、次いで上記溶解液に硫化源を添加して硫化Cdを沈澱させて除去する工程(脱Cd工程)、該溶解液からInを回収する工程(In回収工程)を有することを特徴とするインジウムの回収方法、および回収高品位In。 (もっと読む)


【課題】重金属等を含む廃液等の被処理液から、それらを有価物である金属として回収する方法と装置に関し、被処理液から回収対象金属のみを有価物である金属として回収することができ、且つ回収対象金属以外の不純物を含有する可能性が少なく、回収率が高く回収対象金属の純度が高い回収方法と装置を提供することを課題とする。
【解決手段】回収すべき金属がイオン状態で含有されている被処理液をリアクター本体内に流入するとともに、該リアクター本体内に回収すべき金属よりもイオン化傾向が大きい金属からなる金属線を収容し、イオン化傾向の差異により前記被処理液中に含有される金属を前記金属線の表面に析出させ、その後、前記金属線に超音波発振体を接触させた状態で、該超音波発振体により前記金属線を振動させて前記金属線から前記析出した金属を剥離して回収することを特徴とする回収することを特徴とする。 (もっと読む)


【課題】重金属等を含む廃液等の被処理液から、それらを有価物である金属として回収する方法と装置に関し、被処理液から回収対象金属のみを有価物である金属として回収することができ、且つ回収対象金属以外の不純物を含有する可能性が少なく、回収率が高く回収対象金属の純度が高い回収方法と装置を提供することを課題とする。
【解決手段】 回収すべき金属がイオン状態で含有されている被処理液をリアクター本体内に流入するとともに、該リアクター本体内に回収すべき金属よりもイオン化傾向が大きい金属からなる金属線を収容し、イオン化傾向の差異により前記被処理液中に含有される金属を前記金属線の表面に析出させ、その後、衝突部材を前記金属線に衝突させることにより前記金属線から前記析出した金属を剥離して回収することを特徴とする。 (もっと読む)


【課題】 非鉄乾式製錬におけるダスト等の処理工程で生じる主成分が硫化カドミウムである硫化物から高純度の金属カドミウムを製造する。
【解決手段】 非鉄乾式製錬におけるダスト等の処理工程で生じる主成分が硫化カドミウムである硫化物を
第1工程として硫酸溶液で空気または酸素吹き込みを継続し行い浸出し、
第2工程として得られたカドミウム溶液へアルカリ剤を添加しpH4.5−5.5に調整して粗浄液後、
第3工程で過マンガン酸カリウムを添加しタリウムを酸化沈殿除去し、
金属カドミウムを得るカドミウムの製造方法。 (もっと読む)


【課題】 簡潔な工程で純度の高い金属銅を回収する方法を提供する。
【解決手段】 鉄粉を粉砕機でより微粉末化し、この微粉末化した鉄粉と水とを混練して泥状鉄水混合物を形成する泥状鉄水混合物作成工程と、塩化銅を含有した塩化第二鉄液の廃液を回収しテ得られた塩化銅含有廃液に前記泥状鉄水混合物を投入・攪拌して反応させる攪拌反応工程と、攪拌反応で生成された塩化第一鉄溶液を排出するとともに、底部に沈殿している沈殿物を粉砕機に取出す排出工程と、粉砕機に投入した沈殿物を、pH4以下の塩酸溶液内で粉砕して金属銅を分離させる金属銅分離工程と、取出した金属銅を水洗するすすぎ工程とで構成した。 (もっと読む)


【課題】 酸化性雰囲気での高温酸化ばい焼工程の排除することができ、粉塵を発生せず、環境負荷が低く、過大なエネルギーを要しない高融点金属銅複合材のリサイクルシステムを提供すること。
【解決手段】 高融点金属銅複合材のリサイクルシステムでは、WCu複合材或いはMoCu複合材から、それぞれ単独の金属に分離回収するリサイクルシステムであって、前記リサイクルシステムは、素材の粉砕・高温ばい焼の工程を経ず、前記複合材からCuを単独に溶出分離する工程と、Wを浄化・単離する工程とを備えている。このように、環境負荷の低い湿式処理によりW、Mo及びCuのそれぞれの金属を単独にリサイクル出来る。 (もっと読む)


41 - 60 / 83