説明

Fターム[4K018DA01]の内容

粉末冶金 (46,959) | 焼結 (3,553) | 成型後処理、焼結前処理 (463)

Fターム[4K018DA01]の下位に属するFターム

Fターム[4K018DA01]に分類される特許

21 - 40 / 145


【課題】 プレス成形時に成形体の角部に発生するバリを角部の鋭利さを維持したまま除去できるプレス成形方法を提供する。
【解決手段】 上面から下面に貫通する貫通孔5を有するダイス2の貫通孔5内に下側から下パンチ3を嵌め込んだ状態で原料粉末を充填する工程と、ダイス2の貫通孔5内に上側から上パンチ4を嵌め込んで充填した原料粉末の上面を押圧する工程と、原料粉末が押圧されてできた成形体6の上下面を上パンチ4および下パンチ3で挟み込んだまま成形体6をダイス2の貫通孔5から外へ移動させる工程と、前記ダイスの上面に前記成形体の周囲を覆うカバーを載置する工程と、成形体6の上下面を上パンチ4および下パンチ3で挟み込んだまま成形体6の側面をブラスト加工する工程と、ブラスト処理して発生した粉塵を除去する工程と、成形体6から上パンチ4を後退させて成形体6を取り出す工程と、を具備するプレス成形方法である。 (もっと読む)


【課題】希少資源である重希土類元素を使用せずに磁性材料の特性を改善することが課題である。
【解決手段】希土類鉄系結晶粒と鉄コバルト合金結晶粒の間にフッ素含有粒界相を形成し、希土類元素が偏在化した希土類鉄系結晶粒と鉄コバルト合金結晶粒には磁気的な結合を発現させることにより高エネルギー積を実現させた。高い飽和磁束密度を有し、保磁力が10kOe以上かつキュリー点が600K以上の焼結磁石は、鉄コバルト合金結晶粒を焼結磁石全体に対して0.1重量%から90重量%の範囲の重量にした場合に達成可能である。 (もっと読む)


【課題】大型化を抑制しつつ、R−T−B系磁石を用いた場合にもR−T−B系磁石が減磁するのを抑制することが可能なカップリング装置を提供する。
【解決手段】このカップリング装置100の駆動側回転部1および従動側回転部2は、それぞれ、対向面12aおよび22a側に形成されるとともに、駆動側回転部1と従動側回転部2とを磁気カップリングするための磁石12および22を含み、磁石12および22は、軽希土類元素と、Feを主とする遷移元素と、B(ホウ素)とを主に含むR−T−B系磁石からなり、磁石12および22には、それぞれ、隣接する異なる磁極の間に溝部12fおよび22fが設けられるとともに、溝部12fおよび22fを介して重希土類元素が磁石12および22に拡散されることによって、重希土類元素拡散領域が設けられている。 (もっと読む)


【課題】湿式粉砕を用いた場合であっても、焼結前に磁石粒子の含有する炭素量を予め低減させることを可能とした永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物とともに溶媒中でビーズミルにより粉砕し、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。続いて、焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】セラミックス材と金属材とを簡易な手法で接合し、その接合体において、熱膨張差による接合界面の剥離を防止し、接合強度を改善する
【解決手段】セラミックス材と金属材とが接合されてなる接合体の製造方法であって、クロムを10wt%以上40wt%以下含有する鉄基合金もしくはニッケル基合金からなる三次元網目状の金属多孔質材を、前記セラミックス材および金属材の間に介在させるように積層し、積層方向に加圧しながら加熱する加熱処理を行うことにより、前記金属多孔質材を気孔率が60%以上95%以下である中間層として前記セラミックス材および前記金属材に接合する。 (もっと読む)


【課題】外周面からの油の漏れを防止できる焼結含油軸受を提供する。
【解決手段】内部に空孔を含む多孔質状の焼結合金により形成された軸受本体2に、回転軸が挿通される軸受孔3が形成された焼結含油軸受1において、軸受本体2の外周面で開放された空孔を潰す。圧粉体において空孔を潰したり、圧粉体を焼結した焼結合金において空孔を潰したりしてもよい。これにより軸受1の外周面7から潤滑油が漏れることがなく、内側の軸受孔3における油圧を確保することができる。また、取付部41の内周面は多角形に形成され、軸受本体2が圧入により嵌合固定される。一方、軸受本体2の外周面7と取付部41の内周面との間には隙間が発生する。 (もっと読む)


【課題】粉末金属技術を利用する燃料噴射器固定具の形成法を提供する。
【解決手段】重量百分率で、炭素0.6〜0.9%と、銅1.5〜3.9%と、鉄93.2〜97.9%と、他の元素である残部とを含有する粉末金属材料を成形型内で7.0〜7.1g/cm3の密度に圧密化しかつ温度816〜871℃(1500〜1600°F)で予備焼結して、粉末金属ブランクが形成される。潤滑材により粉末金属ブランクに潤滑性を付与し、少なくとも密度7.3g/cm3に再圧密化した後、温度1121℃(2050°F)で焼結して、最終粉末金属ブランクが形成される。燃料噴射器固定具自体は、ほぼ円筒状の中央部と、中央部から横方向に延伸する第1の翼部と、角度180°だけ第1の翼部から離間して中央部から横方向に延伸する第2の翼部とを有する粉末金属の単一構造体を有する。 (もっと読む)


【課題】樹脂による磁性粉末の被覆性に優れるとともに充填性および圧粉体の成形性に優れた磁心用粉末を用いた圧粉磁心の製造方法を提供する。
【解決手段】磁性粉末および加熱硬化型樹脂からなる樹脂粉末を温間状態で混合して磁心用粉末を得る粉末調製工程と、前記磁心用粉末を成形型に充填する粉末充填工程と、前記磁心用粉末を加圧成形する加圧成形工程と、該成形工程後の圧粉体を前記加熱硬化型樹脂が硬化する高温状態で加熱する圧粉体加熱工程と、からなることを特徴とする。 (もっと読む)


【課題】空隙率が極めて高く、厚みが0.5mm以下の非常に薄い金属多孔質薄板の製造方法を提供する。
【解決手段】発泡樹脂材に硬化助剤を充填する硬化助剤充填工程I、硬化助剤が充填された発泡樹脂材を硬化させる硬化工程II、硬化した発泡樹脂材を薄膜にスライスするスライス工程III、スライスされた発泡樹脂薄膜から硬化助剤を除する硬化助剤除去工程IV、発泡樹脂薄膜に金属粉末スラリーを付着させる付着工程V、金属粉末スラリーが塗布された発泡樹脂薄膜を乾燥させる乾燥工程VI、乾燥した発泡樹脂薄膜から発泡樹脂部分を除去し金属粉末のみ残す樹脂除去工程VII、残された金属粉末を互いに結合させる金属粉末結合工程VIIIを順に実行する。スライス工程IIIでは、発泡樹脂材が硬化しているので、非常に薄くスライスできる。金属粉末により構成され、厚さが0.5mm以下という極薄であるので、電池を薄型にできる。 (もっと読む)


【課題】触媒反応や電極反応に有効利用可能な、大表面積の多孔質金属、ならびに、表面に酸化皮膜を備えた多孔質金属を圧延により作製する方法を提供する。
【解決手段】金属粉末と、粒径が金属粉末の10倍以上の支持粉末とを、金属粉末:支持粉末=3:7〜1:19の体積比で混合する混合工程と、混合した混合粉末を圧延する圧延工程又は混合した混合粉末を加圧成形して圧粉体とする加圧成形工程の後に当該圧粉体を圧延する圧延工程と、前記支持粉末を除去して空隙を形成する支持粉末除去工程とを含むことを特徴とする多孔質金属の製造方法 (もっと読む)


【課題】本発明は、高保磁力,高磁束密度,高比抵抗を有する希土類磁石及びそれを用いた回転機を提供する。
【解決手段】鉄,希土類元素及びフッ素を主成分とする強磁性材料からなる希土類磁石であって、結晶粒内又は粒界に、少なくとも1種の軽希土類元素を含むフッ素化合物又は酸フッ素化合物が形成され、フッ素化合物又は酸フッ素化合物と、結晶粒内又は粒界との間に、4回対称性の結晶構造を有するRlFemn(Rは軽希土類元素、l,m,nは1以上の整数)が存在し、フッ素の濃度が、結晶粒内よりも粒界で高いことを特徴とする希土類磁石。 (もっと読む)


【課題】仮焼処理により活性化された仮焼体の活性度を低下させる永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジウム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃〜600℃で数時間保持することにより脱水素処理を行う。 (もっと読む)


【課題】仮焼処理により活性化された仮焼体の活性度を低下させる永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジウム磁石の微粉末に対して、M−(OR)(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃〜600℃で数時間保持することにより脱水素処理を行う。その後、粉末状の仮焼体を圧縮成形し、焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に、均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】焼結時における単磁区粒子径を有する磁石粒子の粒成長を抑制するとともに、磁気性能を向上させた永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末をプラズマ加熱により仮焼処理を行い、更に、仮焼された粉末状の仮焼体を成形後に焼結することにより永久磁石1を製造する。 (もっと読む)


【課題】湿式粉砕を用いた場合であっても、焼結前に磁石粒子の含有する炭素量を予め低減させることができ、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、有機溶媒中でビーズミルにより粉砕し、その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。続いて、焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】主相の粒成長を防止するとともにリッチ相を均一に分散することを可能とした永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはCu又はAlである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に、均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】低コストで効率よく金属部品を製造する方法及びこの方法によって得た金属部品を提供すること。
【解決手段】本発明に係る金属部品の製造方法は、金属粉末を原料として、中央部に貫通孔を有する金属予備成形体を金属粉末射出成形するステップと、タッピング機で前記貫通孔にねじ山をタッピングして、前記貫通孔の内周壁にねじ山を形成するステップと、前記金属予備成形体に対して脱脂処理及び焼結処理を行うステップと、を備える。 (もっと読む)


【課題】最大エネルギー積の高いRFe14B系焼結磁石を提供する。
【解決手段】粉砕されたR−Fe−B系磁石の微粉末に対して、M−(OR)(式中、MはCu、Coの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】永久磁石中にα−Feが生成されることを抑制することが可能な永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末をジェットミル粉砕分級システム32へと搬送し、所定の範囲(例えば0.1μm〜5.0μm)の粒径のものを分級して回収し、回収された磁石粉末に対して、M−(OR)x(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石の粒子表面に対して均一に有機金属化合物を付着させた後に、成形及び焼結を行うことによって永久磁石を製造する。 (もっと読む)


21 - 40 / 145