説明

Fターム[4K021CA11]の内容

Fターム[4K021CA11]に分類される特許

121 - 140 / 197


【課題】 メンテナンス終了後から通常の動作を再開するまでの時間を短縮する。
【解決手段】 メンテナンスが終了したら、陽極室3内に残留しているN2ガスを排出する。次に、F2ガスタンク31内の圧縮F2ガスを陽極室3内に供給する。次に、加熱により固化状態のKF・2HF8を液状とする。次に、陽極6と陰極7との間に電解電圧を印加し、通常の動作を再開する。この場合、メンテナンス終了後に、F2ガスタンク31内の圧縮F2ガスを陽極室3内に供給しているので、陽極6と陰極7との間に電解電圧を印加すると、直ちに通常の動作を再開することができ、したがってメンテナンス終了後から通常の動作を再開するまでの時間を短縮することができる。 (もっと読む)


【課題】生成された高圧水素に含まれる水を良好に除去するとともに、円滑且つ確実な排水処理を可能にする。
【解決手段】水素生成システム10は、水を電気分解することによって高圧水素を製造する水電解装置14と、前記高圧水素に含まれる水分を除去する気液分離装置18とを備える。気液分離装置18を構成する第1気液分離器18aには、排水ライン28が接続されるとともに、前記排水ライン28には、減圧弁30と電磁弁32とが、排水流れ方向に沿って順次配設される。 (もっと読む)


【課題】簡易な構造を有し、水素極側雰囲気と酸素極側雰囲気との間でのガスリークが少なく安全な運転を可能とする水素製造装置を提供する。
【解決手段】ユニット容器3と、ユニット容器3内に設置され水素発生極17の側及び酸素発生極18の側に貫通していない導入穴22が交互に形成されている電解セルであるハニカム型セル2と、シール部11と、原料となる水蒸気を供給する水蒸気供給系1と、酸素を供給する酸素ガス供給系7と、ハニカム型セル2に電力を供給する電力供給装置12と、水蒸気が電気分解されて水素が生成され、この生成された水素が未分解の水蒸気と共に流出する水素発生極側出口3aと、水蒸気が電気分解されて生成された酸素イオンはハニカム型セル2内の電解質を通過し酸素発生極18の側において酸素が生成され、生成された酸素が流出する酸素発生極側出口3bと、を有する水素製造装置。 (もっと読む)


【課題】水酸化カリウム電解液における水電解により効率よく大量に水電解ガスを生成し、電解液との気液分離を行うことにより水電解ガスを発生する装置を提供する。
【解決手段】底部側に電解液導入口11を有し、頂部側に電解液及び生成ガスの混在物を取り出すための取出し口15を有する電解槽10内の陽極板12、陰極板13並びに両電極板間に配設されたアルカリ電解液を旋回流動させながら通流させるための電解液の旋回通流手段14を備えた水電解ガス生成用電解槽10において水電解を行う。電解槽10の上端から取り出される水電解ガスと電解液の混在物を水電解ガス−電解液分離槽20において気液分離して水電解ガスを外部に取り出し、電解液を電解液循環手段40により電解槽10側に循環させて電解反応を継続的に実施する水電解ガス発生装置。 (もっと読む)


【課題】酸素及び水素を発生させる水電解槽で火災が発生した際に、安全かつ経済的に消火できる方法を提供する。
【解決手段】水電解装置は、固体高分子電解質膜を用いて水を電解し、陽極に酸素を、陰極に水素をそれぞれ発生させる電解槽12と、電解槽を水没させるための容器11とを備えている。容器内11の水は、電解槽12内部と連通されない状態となされている。この水電解装置を用いることにより、たとえば電解槽12が破損し火災が発生した場合でも、容器11内の水によって消火される。 (もっと読む)


【課題】大表面積のNi電極表面に対しても簡便に高比表面積化が可能であり、水の電気分解時に生じる気体ガスの気泡の影響を受けにくい電気分解用電極及びその製造方法を提供する。
【解決手段】電解液を電気分解するための電極101において、基板となる電極心材と、電極心材表面に形成された複数の凸状構造体102とを有し、凸状構造体102は木の葉状の形状を有し、それぞれが電極心材表面から隆起していることを特徴とする。 (もっと読む)


【課題】無重力空間や微小重力空間であっても、ガスと原料水とを省スペースで簡単に分離することができる電気分解装置及びこれを利用する燃料電池発電システムを提供する。
【解決手段】硫酸水溶液4を流通させる原料水流通穴151aを内部に形成された陽イオン交換樹脂からなる電解質膜151と、電解質膜151の一方の外面に配設されてガス透過性及び導電性を有する酸素極152と、電解質膜151の他方の外面に配設されてガス透過性及び導電性を有する水素極153と、酸素極152と水素極153との間に電気を流す太陽電池電源とを備えて電気分解装置を構成した。 (もっと読む)


【課題】電解ガスの発生を伴って被電解液を電解する電解セルにおいて、電流効率の向上を図る。
【解決手段】複数枚の電極がそれぞれ対向して配置され、下部側に流入口5a、上部側に流出口5bが設けられた電極ユニット5を備え、流入口5aから流出口5bにかけて電極間に被電解液を上向流で通液しながら電解する電解セル1であって、流入口5aに被電解液を供給する被電解液供給ライン11と、電解後の電解液の一部を流入口5aに還流する電解液還流ライン6と、流出口5bの下流側であって電解後の電解液と電解ガスとの気液界面より上方に設けられた電解ガス排出手段(電解ガス排出ノズル12、電解ガス排出ライン13)と、流出口5bの下流側であって気液界面より下部に設けられた電解液排出部(電解液排出口14)と、電解液排出部から電解液を電解セル外部に排出する電解液排出ライン15を備える。 (もっと読む)


【課題】電気分解を利用した電解装置において、この装置で発生したガスを効率よく大量に長時間発生させる。
【解決手段】電解液を充填した電解槽10内に正極電極12及び負極電極13を浸漬し、両電極12,13間に直流交番電圧を印加する。両電極12,13間には複数の中間電極14が配置される。前記電解槽10は密閉蓋18により密閉され、電気分解により発生したガスが密閉蓋18に設けられた排出口19から取り出される。 (もっと読む)


【課題】水及び酸素含有ガス(例えば、空気)のみを原料として過酸化水素を製造する電解セルであって、陽極で発生した酸素を陰極へ円滑に供給すると共に、陽極での酸素ガスの滞留を抑制して水を陽極へ円滑に供給することが可能な過酸化水素製造用電解セルを提供する。
【解決手段】電解質層1を陽極2及び陰極3により狭持してなる過酸化水素製造用電解セルであって、前記電解質層1が、前記陽極2と前記陰極3との間を連通する連通孔5を有し、且つ前記陽極2の前記電解質層1に接する面とは反対側の面に親水性多孔質層4を配置したことを特徴とする過酸化水素製造用電解セルとする。 (もっと読む)


電解槽および水素生成における同電解槽の使用方法。一実施態様によると、この電解槽は内部を有する枠体を備える。この内部を2つの室に分割するために、枠体の内部に陽子交換膜(PEM)が設けられる。枠体の内部にはガス拡散電極の形態の陽極がPEMから離して設けられ、陽極とPEMとの間の空間は硫酸水溶液で満たされる。枠体の内部には陰極が設けられ、PEMにイオン結合される。使用時、陽極の硫酸溶液側とは反対の側に亜硫酸ガスが供給され、電流が電解槽に供給される。この結果、陽極において二酸化硫黄が酸化され、陰極において分子状水素が発生する。 (もっと読む)


【課題】電解液に対する冷却システムを取り入れて、強制循環水冷冷却システムによるブラウンガス発生を24時間連続運転することが可能なブラウンガス発生装置を提供する。
【解決手段】強制循環水冷冷却システムを有するブラウンガス発生装置は、電解液(50)を利用してブラウンガスを発生する電解槽(10)と、電解槽(10)の電解液(50)を外部で循環させる電解液循環ポンプ(90)と、電解液循環ポンプ(90)により外部にて循環された電解液内に含まれたブラウンガスを分離する気水分離器(140)と、気水分離器(140)により気水分離した電解液を水冷式で冷却させる熱交換器(100)とを備えている。 (もっと読む)


【課題】大量のブラウンガスを安全で効率的に発生させることができる大容量ブラウンガス発生装置とその電解槽の提供。
【解決手段】大容量ブラウンガス発生装置10は、水を電気分解してブラウンガスを生成する多数の電解槽100a〜100fからなる電解部100と、電解槽装着フレーム200と、電解部100に直流電流を供給する電源供給部300と、電解部100の冷却手段400と、ブラウンガスを集合させ送り出すガス集合手段と、送り出されたブラウンガスの圧力を一定に制御する圧力調節部と、ブラウンガスを水中を通過させることによって外部からの火炎が電解槽へ逆流することを遮断する水封式逆火防止器700と、ブラウンガスに含まれている水分を除去するための水分除去器800と、電圧と電流の制御及び各種計器やセンサー等の構成要素を総合的に制御する制御部900を有する。 (もっと読む)


エンクロージャーと、陽極と陰極とをセットで有し、高温電気分解に耐えるように構成
された少なくとも一つの電解プレート(8)と、機能流体の加熱手段と、を有し、前記エ
ンクロージャーは、数十バールの高圧あるいは超高圧に電解質浴槽を維持可能とし、前記
加熱手段(10)は、エンクロージャー内に配置され、熱輸送流体を利用することを特徴
とする外熱式モードでの処理を可能とする高温電気分解用の電解槽。 (もっと読む)


本発明は、水を水素と酸素に分解するための電解装置に関し、該装置は、
電解スタック(5)と、
回路(11、13)、再循環ポンプ(15)、スタック(5)内でそれぞれ生成された水素と酸素とを水から分離するための第1及び第2の分離器(7、9)を含む、前記スタックに水を供給する水再循環システムと、
気体水素及び酸素の生成により消費された水を補うために再循環回路(11、13)に脱イオン水を供給する油圧供給手段と、
装置が停止したときに第1及び第2の分離器(7、9)を不活性化するための消火手段と、を含み、
消火手段が、2つの分離器内の圧力を同時に解放する一方で2つの分離器内の水位を実質的に一定に保持すべく第1及び第2の分離器(7、9)にそれぞれ設けられた第1及び第2の解放弁(36、23)を含むことと、消火手段が、2つの分離器が圧力を解放したら2つの分離器(7、9)を水で完全に満たすように前記供給手段を制御することとを特徴とする。 (もっと読む)


【課題】電極個数の増加と電極間距離の減少が可能な薄膜電極を形成することにより水素発生量を増加させることができ、制御部を通して燃料電池から必要とする水素量または電力量に応じて電子量を制御することができる、水素発生装置及び燃料電池発電システムを提供する。
【解決手段】水素発生装置は400、電解質水溶液412が入っている電解槽410と、電解槽410内部の一面に積層されて電子を発生させる第1電極422,442と、第1電極422,442の上に積層されて電解質水溶液412を吸湿する吸湿層424,444と、吸湿層424,444の上に積層され、電子及び電解質水溶液412を用いて水素を発生させる第2電極426,446とを含むことを特徴とする。 (もっと読む)


代替エネルギー源のために、炭素源および水素源を、アルコール類等の炭化水素類に変換するための装置および方法を記載する。流入液は、炭酸ガス、および水素ガスまたは水を含み得、プラズマ発生または電気分解等、本明細書に記載される方法によって、大気から得ることができる。炭化水素類を生成するための一方法は、アノードと、カソードと、電解質とを備える電解装置の使用を含む。別の方法は、反応を促進するための超音波エネルギーの使用を含む。該装置および方法ならびに関連装置および方法は、例えば、化石燃料代替エネルギー源を提供するため、再生可能なエネルギーを貯蔵するため、該大気から二酸化炭素を隔離するため、地球温暖化に対抗するため、および二酸化炭素を液体燃料として貯蔵するために有用である。
(もっと読む)


【課題】従来の高温水蒸気電解においては水素富化水蒸気と高温の純酸素が発生するため、水素と水蒸気の分離が必要であり、また酸素を回収することが困難であった。
【解決手段】水素極室14を有する水素極室11、酸素極15を有する酸素極室12、プロトン導電性固体電解質13から構成された水蒸気電解装置10の酸素極室12に、水供給部1から供給される水を昇温部2で高温水蒸気として酸素極室12へ供給する。水蒸気電解装置10は電源5から電力供給を受けて水蒸気電解を行う。水素極室11で水素ガスが、酸素極室12で酸素と高温水蒸気が混合した酸素富化水蒸気が発生する。水素と酸素富化水蒸気が発生するため、水素と水蒸気の分離が不要であり、酸素の分圧低減が不要となる。 (もっと読む)


【課題】水素を安定的に得ることのできる水素発生装置を提供する。
【解決手段】一定の大きさの内部空間を有する電解槽110と、電解槽110の開放された上部を覆って密閉し、少なくとも1つの水素排出口124を具備する蓋120と、電解槽110内に配置され一定量の電解液が満たされる伸縮袋130と、蓋120に固定され伸縮袋130に満たされた電解液に浸漬され電源印加時に電解液を電気分解させる電極部と、電極部に電流を印加する電源部150とを含む水素発生装置100。伸縮袋130は電解液の減少に際し水位を一定に維持するように容積を減少させるので、電極と電解液間の接触面積が常に一定に維持され水素を安定的に発生させることができる。 (もっと読む)


電極において有用な組成物は、ナノ粒子触媒をその組成物中に存在させ、使用することによって、より高い電力可能出力をもたらす。マンガン、ニッケル、コバルト、鉄、パラジウム、ルテニウム、金、銀および鉛などの遷移金属ならびにそれらの合金およびそれぞれの酸化物のナノ粒子が好ましい。これらのナノ粒子触媒は、ある種の電気化学反応向け触媒としての白金を実質的に代替し、もしくは無くすることができる。このような触媒を用いた、アノード、カソード、またはその両方として使用される電極は、金属−空気電池、水素燃料電池(PEMFC)、直接メタノール燃料電池(DMFC)、直接酸化燃料電池(DOFC)、および他の空気もしくは酸素通気性電気化学系、ならびにいくつかの液体拡散電極に関連した用途を有する。図1は、ニッケルナノ粒子触媒の透過電子顕微鏡写真であり、粒子の大きさおよび均質性を示す。 (もっと読む)


121 - 140 / 197