説明

Fターム[4K021CA11]の内容

Fターム[4K021CA11]に分類される特許

21 - 40 / 197


【課題】簡略な装置構成で電解装置への固形物の混入を防止して連続的かつ安定的な運転を実現する硫酸溶液供給システム及び硫酸溶液供給方法を提供する。
【解決手段】硫酸溶液を冷却する冷却器25、硫酸溶液を電解する電解セル4、バッチ式洗浄機2で使用された硫酸溶液を冷却器25、電解セル4をこの順に介してバッチ式洗浄機2に戻す電解側循環ラインと、バッチ式洗浄機2で使用された硫酸溶液を冷却器25を介さずにバッチ式洗浄機2に戻す使用側循環ラインを備え、電解側循環ラインと使用側循環ラインが、バッチ式洗浄機2から排液された硫酸溶液が流れる共通した共通排液ライン10を有し、共通排液ライン10の下流側端部にある分岐点10aからそれぞれが分岐しており、共通排液ライン10に固形物を捕捉する洗浄機側フィルタ21を備える。 (もっと読む)


【課題】電極面積を低減し、海水電解装置のコンパクト化を図る。
【解決手段】電極として陽極及び陰極が収納された電解槽本体20内に流通される海水Wを、陽極及び陰極間に通電される電流によって電気分解する海水電解装置2を備え、陽極は、酸化イリジウムを含むコーティング材をチタンに被覆してなり、海水電解装置2の前段に、海水中に含まれる塩化物イオンの濃度を高める濃縮手段とを備える海水電解システム100。 (もっと読む)


【課題】システム停止時に、気液分離装置から廃棄される水素量を可及的に抑制することができ、システム効率を良好に向上させることを可能にする。
【解決手段】水電解システム10を構成する制御装置82は、水位検出センサ64により気液分離装置52内の水位が排水を必要とする上限高さであると検出された時点から、高圧水素貯蔵タンク53が満タンになるまでの残余充填量を算出する残余充填量算出部84と、前記気液分離装置52内の水位が排水を停止させる下限高さから前記上限高さに至る排水周期の間に、水電解装置12により製造される水素量を算出する製造水素量算出部86と、前記残余充填量算出部84により算出された前記残余充填量が、前記製造水素量算出部86により算出された前記水素量よりも少ない場合に、前記水電解装置12による水電解処理を終了させる水電解終了判断部88とを備える。 (もっと読む)


【課題】ガス状の媒体を圧縮する方法ならびに装置を改良して、上述の欠点を解消する。
【解決手段】圧縮されるべき媒体を、圧縮V1,V2のまえに、少なくとも圧縮過程中に水の凝縮分離が防止されるまで加熱E1,E2し、圧縮された媒体5,8を水分離D2,D3にかける。 (もっと読む)


【課題】気液分離装置から排出される水を、直接、電解処理に使用することにより、水電解システムにおける水供給量に対する水素製造量を良好に増加させることを可能にする。
【解決手段】水電解システム10は、水を電気分解することによって酸素及び高圧水素を製造する差圧式の第1水電解装置12と、前記第1水電解装置12から高圧水素配管20に導出される前記高圧水素に含まれる水分を除去する気液分離装置22と、前記気液分離装置22から水が分離された前記高圧水素を導出する高圧水素導出ライン24と、前記気液分離装置22から水を排出する排水ライン26と、前記排水ライン26に配設され、水を電気分解することによって酸素及び高圧水素を製造する差圧式の第2水電解装置28とを備える。 (もっと読む)


【課題】簡単な構成及び工程で、気液分離装置の排水構造を不要にすることができ、効率的な水電解処理を行うことを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と前記酸素よりも高圧な高圧水素とを発生させる水電解装置12と、前記水電解装置12よりも重力方向上方に配設され、前記高圧水素に含まれる水分を分離する気液分離装置22と、前記水電解装置12から排出される前記高圧水素を前記気液分離装置22に導入する水素導入ライン20と、前記気液分離装置22内の水位を検出する水位検出センサ90と、検出された前記気液分離装置22内の水位に基づいて、前記水電解装置12に印加する電流を調整する直流可変電源40及びコントローラ28とを備える。 (もっと読む)


【課題】高圧水に溶存する水素を無駄に廃棄することがなく、経済的且つ効率的な水電解処理を安定して行うことを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と前記酸素よりも高圧な高圧水素とを発生させる水電解装置12と、前記水電解装置12から前記高圧水素を排出する高圧水素配管20に配設され、前記高圧水素に含まれる水分を分離する気液分離装置22と、前記気液分離装置22から水が分離された前記高圧水素を導出する高圧水素導出ライン24と、前記気液分離装置22から水を排出する排水ライン26と、前記気液分離装置22から前記排水ライン26に排水を行う前に、前記気液分離装置22内の水温を上昇させるための加熱装置92とを備える。 (もっと読む)


【課題】排水中の溶存水素を有効に減少させることができ、排水ラインに高圧水が排水されることを阻止するとともに、前記排水ラインに配置されるデバイスの耐久性を向上させることを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と前記酸素よりも高圧な高圧水素とを発生させる水電解装置12と、前記水電解装置12から前記高圧水素を排出する水素配管50に配設され、前記高圧水素に含まれる水分を分離する気液分離装置52と、前記気液分離装置52から水が分離された前記高圧水素を導出する高圧水素導出配管54と、前記気液分離装置52から水を排出する排水ライン56と、前記気液分離装置52から前記排水ライン56に排水を行う前に、前記気液分離装置52内の脱気を行うための気相脱圧ライン58とを備える。 (もっと読む)


【課題】ブリスターの発生を抑制するとともに、迅速な脱圧処理を遂行することを可能にする。
【解決手段】水電解システムの運転停止方法は、通常の電解電流による電解処理を停止するとともに、カソード側の脱圧処理を開始する工程と、前記脱圧処理を行いながら、前記電解電流よりも低い第1電解電流A(H)を印加して第1脱圧用電解処理を行う工程と、前記カソード側の圧力が設定閾値まで降圧した際に、前記第1電解電流A(H)よりも低い第2電解電流A(L)を印加して第2脱圧用電解処理を行う工程とを有している。 (もっと読む)


【課題】気液分離装置の排水ラインに配設される背圧弁の故障を、簡単且つ経済的な構成及び工程で、確実に検出することを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と前記酸素よりも高圧な高圧水素とを発生させる水電解装置12と、前記水電解装置12から前記高圧水素を排出する高圧水素配管20に配設され、前記高圧水素に含まれる水分を分離する気液分離装置22と、前記気液分離装置22から水を排出する排水ライン26とを備える。排水ライン26には、背圧弁94、減圧弁96、圧力検出センサ100及び電磁弁98が配置されるとともに、前記水電解システム10は、電解停止後に前記電磁弁98を開弁させて脱圧を行う際、前記排水ライン26の圧力を検出して前記背圧弁94の故障を検知する故障検知装置102を備える。 (もっと読む)


【課題】電解液が流入する流入セルを挟んで2つの電極が配設されて、そして流入セル内の電解液の圧力が、それら2つの電極を通過した電解液が流出するそれぞれの流出セル内の電解液の圧力よりも高いことによって電解液を分流して、電解液、特には水の電気分解又は光分解によって各々の電極において生成される生成物、特には酸素及び水素のガスを容易に分離して回収することができる電解液分解装置を提供する。
【解決手段】電解液分解装置100は、電解液が流入する流入セル10と、その流入セルを挟んで配設される第1電極部20と第2電極部30と、その第1電極部を通過したその電解液が流出する第1流出セル40と、その第2電極部を通過したその電解液が流出する第2流出セル50とを備え、その流入セル内のその電解液の圧力が、その第1流出セル内及びその第2流出セル内のその電解液の圧力よりも高いことを特徴とする。 (もっと読む)


【課題】可視光で効率的に水素、酸素などのガスを発生させることのできる装置を提供する。
【解決手段】ガス生成装置は、水を含む電解液12から酸素ガスおよび/または水素ガスを生成するガス生成装置である。このガス生成装置は、電解液から酸素ガスを生成するアノード電極と、電解液で生成された水素イオンおよび電子から水素ガスを生成するカソード電極3と、アノード電極およびカソード電極の少なくとも一方に設けられていて、可視光を利用する光触媒反応により、電解液から酸素ガスを生成する第1光触媒および/または水素ガスを生成する第2光触媒を含む光触媒含有層15と、アノード電極またはカソード電極の少なくとも一方に設けられ、電解液を通過させず、かつ生成された酸素ガスまたは水素ガスを通過させる複数の貫通孔113と、貫通孔を通過した酸素ガスまたは水素ガスを収容するガス収容部と、を備える。 (もっと読む)


【課題】高圧水に溶存する水素を無駄に廃棄することがなく、経済的且つ効率的な水電解処理を安定して行うことを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と高圧水素とを発生させる水電解装置12と、前記水電解装置12から前記高圧水素を排出する第1水素配管50に配設される第1気液分離器52と、前記第1気液分離器52から前記高圧水素を導出する第1高圧水素導出配管54と、前記第1気液分離器52から水を排出する第1排水配管56と、前記第1水素配管50から分岐する第2水素配管58に配設される第2気液分離器60と、前記第2気液分離器60から前記第1高圧水素導出配管54に前記高圧水素を導出する第2高圧水素導出配管62と、前記第2気液分離器60から水を排出する第2排水配管64と、制御弁装置78とを備える。 (もっと読む)


【課題】気液分離装置から高圧な水が急速に排出されることを抑制し、簡単且つ経済的な構成で、電磁弁の耐久性を良好に向上させることを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と前記酸素よりも高圧な高圧水素とを発生させる水電解装置12と、前記水電解装置12から前記高圧水素を排出する高圧水素配管20に配設され、前記高圧水素に含まれる水分を分離する気液分離装置22と、前記気液分離装置22から水を分離された前記高圧水素を導出する高圧水素導出ライン24と、前記気液分離装置22から高圧な水を排出する高圧水排出ライン26と、コントローラ28とを備える。高圧水排出ライン26は、電磁弁94と、前記電磁弁94の下流に設けられ、前記高圧水排出ライン26を流通する水に圧力損失を付与する流量調節弁98とを備える。 (もっと読む)


【課題】起動直後においても良好な電解性能を得ることが可能な電解槽の製造方法を提供する。
【解決手段】構成要素として少なくとも陽極、イオン交換膜及び陰極を有する電解槽の製造方法であって、水酸化ナトリウム水溶液を蒸発濃縮することによって発生する蒸発蒸気を凝縮して凝縮水を準備する、準備工程S1と、イオン交換膜及び陰極のうちの少なくとも一つと、凝縮水とを接触させる、接触工程とS2、接触工程とともに、又は、接触工程の後、構成要素を組み立てる、組み立て工程S3とを有する、電解槽の製造方法。 (もっと読む)


【課題】部品点数を削減するとともに、一層の小型化及び簡素化を図ることを可能にする。
【解決手段】高圧水素製造装置12は、複数の第1単位セル22aが重力方向に積層される第1セルユニット24aと、前記第1セルユニット24aの重力方向下端部に連結され、複数の第2単位セル22bが前記重力方向に積層される第2セルユニット24bとを備える。第1単位セル22aは、固体高分子電解質膜48の一方の面側に設けられるアノード電極触媒層50a及びアノード側給電体50と、前記固体高分子電解質膜48の他方の面側に設けられるカソード電極触媒層52a及びカソード側給電体52とを有し、水を電気分解する水電解セルである。第2単位セル22bは、固体高分子電解質膜48の一方の面側に設けられるアノード側給電体50と、前記固体高分子電解質膜48の他方の面側に設けられるカソード側給電体52とを有し、カソード側の水分をアノード側に透過させる水透過セルである。 (もっと読む)


【課題】アノード側とカソード側とに差圧が発生していても、迅速且つ効率的に水電解処理を開始することを可能にする。
【解決手段】差圧式水電解装置10の運転方法では、カソード側電解室の圧力に対応した水電解に必要な電流値を、予め算出する第1の工程と、水電解処理が停止された状態で、前記カソード側電解室の圧力を検出する第2の工程と、前記水電解処理が開始されるか否かを判断する第3の工程と、前記水電解処理が開始されると判断された際、検出された前記カソード側電解室の圧力に対応して予め算出された前記電流値以上の電流により、前記水電解処理を開始する第4の工程とを有している。 (もっと読む)


【課題】温調用デバイスを不要することができ、システム全体の小型化及びシステム効率の向上を容易に図ることを可能にする。
【解決手段】水電解システム10の運転方法は、高圧水電解装置12に供給される循環水の温度を検出する工程と、前記循環水の温度が上昇する運転起動時に、定格運転時の電流密度よりも低い低電流密度で運転する工程と、前記循環水の温度が一定の温度範囲内に維持される際、前記定格運転に移行したと判断する工程と、前記定格運転時に、前記循環水の温度に基づいて予め設定された電流密度で運転する工程とを有する。 (もっと読む)


【課題】銅の表面改質をして活性及び耐久性を向上させた表面改質銅部材を提供する。
【解決手段】銅又は銅合金からなる基体の表面に、炭素ドープされた酸化銅又は炭素ドープ銅合金酸化物層からなる炭素ドープ酸化物層を具備する。該炭素ドープ酸化物層は、前記基体を、少なくとも炭素を含む化合物を含有するガスの燃焼炎を用いて行うか、又は少なくとも炭素を含む化合物を含有するガスの燃焼ガス若しくは燃焼排ガスを用いて形成した雰囲気中で加熱処理するかによって形成したものである。 (もっと読む)


【課題】固体高分子形の水素製造セルの耐圧性能を向上させ、高圧水素製造時の差圧制御を不要とする。
【解決手段】固体高分子電解質膜11の両面に酸素側集電体12と水素側集電体13が配置された水素製造セル1において、酸素側集電体12は水素側集電体13よりも大きく、酸素側集電体12の縁部が、全周に渡って水素側集電体13の縁部の外方に位置し、水素側集電体13の外周にOリング22が配され、Oリング22の固体高分子電解質膜11を介した対向位置は、酸素側集電体12の縁部より内側である。水素側集電体13側から酸素側集電体12に対して正の圧力がかかっても、固体高分子電解質膜11を介して酸素側集電体12が受け止める。そのため固体高分子電解質膜11が直接圧力を受け止める事はなく、セル全体の耐圧性能が向上し、水素側集電体13側と酸素側集電体12側との差圧制御は不要である。両極間のガスが混合することもない。 (もっと読む)


21 - 40 / 197