説明

Fターム[4K032AA23]の内容

鋼の加工熱処理 (38,000) | 鋼の合金成分及び不純物 (27,437) | Ni1%未満 (1,218)

Fターム[4K032AA23]に分類される特許

41 - 60 / 1,218


【課題】表面品質に優れ、かつ延性亀裂伝播特性に優れた熱延鋼板の製造方法を提供する。
【解決手段】C:0.02〜0.08%、Nb:0.03〜0.10%、Ti:0.005〜0.05%を含み、Si、Mn、P、S、Al、Nを適正量に調整した組成を有する鋼素材に、粗圧延工程と、仕上圧延工程と、巻取工程とを順次施すに当たり、粗圧延工程後で仕上圧延工程前に、または、仕上圧延工程中に、表層部を50℃/s以上の冷却速度でAr変態点以下の温度に達するまで急冷する加速冷却を施したのち、該加速冷却を停止し、しかる後に施す仕上圧延は1パス当たりの圧下率を、(1.1×一様伸び)%以下に限定する。これにより、表面品質に優れ、靭性、とくに延性亀裂伝播特性に優れた高張力熱延鋼板とすることができる。 (もっと読む)


【課題】高強度・高靱性で、せん断加工での切断の際、切断面に発生する割れの防止に優れる厚鋼板を提供する。
【解決手段】質量%で、C:0.03〜0.12%、Si:0.01〜0.5%、Mn:1.5〜3.0%、Al:0.01〜0.08%、Nb:0.01〜0.08%、Ti:0.005〜0.025%、N:0.001〜0.01%、B:0.0005〜0.003%以下、更にCu:0.01〜2%、Ni:0.01〜3%、Cr:0.01〜1%、Mo:0.01〜1%、V:0.01〜0.1%、必要に応じて、Ca、REM、Zr、Mgの一種または二種以上、残部Fe及び不可避的不純物からなる成分組成を有し、ミクロ組織がベイナイト,マルテンサイト,ベイナイト+マルテンサイトのいずれかである厚鋼板。 (もっと読む)


【課 題】耐火鋼材とその製造方法を提供する。
【解決手段】C:0.01〜0.1%、Si:0.01〜1.0%、Mn:0.1〜2.0%、A1:0.003〜0.1%、Mo:0.010〜0.30%、Nb:0.010〜0.20%を、炭素当量Ceqが0.46以下を満足するように調整して含む鋼素材を、1000〜1350℃の範囲の温度に加熱したのち、圧延終了温度が850℃以上となる熱間圧延を行い、ついで、(Ar3変態点−30℃)〜(Ar3変態点−130℃)の範囲の温度まで空冷または加速冷却し、(Ar3変態点−30℃)〜(Ar3変態点−130℃)の温度範囲で圧下率が1.0〜10%の範囲で、少なくとも1パスの熱間圧延を行う。これにより、二相温度域での圧延により歪誘起析出が促進されて、圧延ままの状態で、粒径20nm未満の微細なNb析出物がNb換算で0.01〜0.08%の範囲で多量に析出する。粒径20nm未満の微細なNb析出物の多量析出により、火災時の高温加熱時に微細なMo炭化物の析出が促進され、低Mo系でも、高温耐力が増加し、耐火性能が顕著に増加する。 (もっと読む)


【課題】延性と伸びフランジ性に優れ、延性−伸びフランジ性のバランスも良好な高張力熱延鋼板の提供。
【解決手段】質量%で、C:0.08%超0.30%未満、Si:3.0%以下、Mn:1.0%以上4.0%以下、P:0.10%以下、S:0.010%以下、sol.Al:3.0%以下、N:0.010%以下を含有し、かつSi+sol.Alの合計含有量が0.8%以上3.0%以下の化学組成を有し、かつDαq≦5.0、Vαq≧50、Vγq≧3、Vαs>Vαq、Vγs>Vγq(DαqおよびVαqは、それぞれ鋼板表面から板厚の1/4深さ位置でのフェライトの平均粒径(μm)および面積率(%)、Vγqは同位置での残留オーステナイト体積率(%)、VαsおよびVγsはそれぞれ鋼板表面から100μm深さ位置でのフェライト面積率(%)および残留オーステナイト体積率(%)を表す)を満たす鋼組織を有する。 (もっと読む)


【課題】船舶のバラストタンク等の厳しい海水腐食環境下においても、優れた塗装耐食性を発揮して、補修塗装までの期間の延長が可能で、しかも補修塗装の作業を軽減することができる船舶用耐食鋼材を提供する。
【解決手段】質量%で、C:0.03〜0.20%、Si:0.05〜0.50%、Mn:0.7〜2.0%、P:0.035%以下、S:0.01%以下、Al:0.10%以下、Sn:0.02〜0.2%、Nb:0.003〜0.03%、O:0.0005〜0.0030%、Ti:0.005〜0.030%およびN:0.0010〜0.010%を含み、かつCu,NiおよびCrをそれぞれCu:0.20%未満、Ni:0.20%未満およびCr:0.20%未満で含有し、残部はFeおよび不可避的不純物からなる成分組成とする。 (もっと読む)


【課題】X70ク゛レート゛以上の優れた強度及び靭性バランスを有する、引張性能及び溶接金属の低温靭性が優れた高強度のベンド管を提供する。
【解決手段】組成が、C:0.03〜0.12%、Si:0.05〜0.50%、Mn:1.4〜2.2%、S:0.01%以下、Al:0.06%以下、N:0.008%以下、残部Fe及び不純物であり、炭素当量Ceqが0.36%以上であるとともに溶接割れ感受性指数Pcmが0.22%以下である母材と、溶接割れ感受性指数Pcmが0.28%以下であり、B量が5ppm以下であるとともにO量が280ppm以下である溶接金属とを備えるUOE鋼管を、900〜1100℃の温度域に加熱して曲げ加工した後、それを直ちに3℃/s以上の冷却速度で300℃以下の温度域まで冷却し、その後300〜500℃の温度域で焼戻す。 (もっと読む)


【課題】造船、建築、土木等の各種構造物で使用される鋼材、特に溶接入熱量が300kJ/cmを超える大入熱溶接に適した鋼材を提供する。
【解決手段】鋼成分組成がmass%でC:0.03〜0.10%、Si:0.50%以下、Mn:0.5〜2.5%、P:0.04〜0.08%以下、S:0.0005〜0.0040%、Al:0.003%以下、Nb:0.003〜0.04%、Ti:0.010〜0.080%、Cr:1.0%以下、N:0.0020〜0.0100%、O:0.0030〜0.0120%、必要に応じてB、Cu、Ni、Mo、V、Ca、Mg、Zr、REMの一種または二種以上を含有し、残部Fe及び不可避的不純物からなり、鋼中の、粒径1μm以下のTi酸化物および/またはTiを含む酸化物含有介在物の個数密度が300個/mm以上で、溶接入熱量300kJ/cm超えのボンド近傍の熱影響部組織における旧オーステナイト粒径が150μm以下である鋼材。 (もっと読む)


【課題】 塗装費用の削減が可能である、耐食性に優れた鋼製海洋構造物を提供する。
【解決手段】 構造物の高さ方向に飛来海塩粒子量が異なる環境で使用される塗装鋼材製海洋構造物において、前記飛来海塩粒子量について所定の境界値を設定し、前記構造物のうち前記飛来海塩粒子量が前記境界値超えとなる領域を下部領域とし、前記構造物のうち前記飛来海塩粒子量が前記境界値以下となる領域を上部領域とし、前記境界値を0.1mdd以下とし、前記下部領域と前記上部領域とでは異なる厚さの塗装を施すものとし、前記上部領域の塗装厚みを前記下部領域の塗装厚みより薄くする。これにより、塗装作業の軽減、再塗装期間の短縮が可能となり、塗装費用が低減できる。 (もっと読む)


【課題】高い引張強度と降伏強度とを有し、軸方向の引張及び圧縮の繰り返し応力に対する疲労強度に優れ、かつ、熱伝導率の低いコネクティングロッド用鋼を提供する
【解決手段】本発明によるコネクティングロッド用鋼は、C、Si、Mn、P、S、Cr、Al、Ti、V、N、Oを含有し、選択元素として、Cu、Ni、Moを含有し、fn1が47以上であり、fn2が0.60以上であり、fn3が0.0002〜0.0080である。
fn1=6.7×(42[Si%]+25[Mn%]+14[Cu%]+12[Ni%]+16[Cr%]+12[Mo%]+42[Al%]+14[V%])0.5・・・(1)
fn2=[C%]+[Si%]/7+[Mn%]/5+[Cr%]/9+[V%]/2−5[S%]/7・・・(2)
fn3=[Ti%]−0.599[O%]・・・(3) (もっと読む)


【課題】 靭性を向上した熱間工具鋼の製造方法を提供する。
【解決手段】 0.005質量%以上のPを含有する熱間工具鋼の成分組成の溶鋼を得る第1工程と、前記の熱間工具鋼の成分組成の溶鋼にZnを添加する第2工程と、前記のZnを添加した溶鋼を鋳造して鋼塊を得る第3工程とからなり、前記の第2工程は、前記の第3工程の鋳造後の鋼塊の成分組成が、Zn:0.0025超〜0.025質量%、P:0.005質量%以上を含み、かつZn/P:0.5超の熱間工具鋼となるように、Znを添加するものである熱間工具鋼の製造方法である。第3工程の鋳造後の鋼塊の成分組成は、質量%で、C:0.3〜0.6%未満、Si:1.5%以下、Mn:1.5%以下、Cr:3.0〜6.0%未満を含む熱間工具鋼であることが好ましい。MoおよびWは単独または複合で(Mo+1/2W):3.5%以下、あるいはさらにV:1.5%以下を含んでもよい。 (もっと読む)


【課題】 自動車や産業機械などのギヤやシャフトなどの動力伝達用部品として用いる機械構造用鋼で、被削性の低下を抑えてねじり疲労強度を向上させた鋼材を提供する。
【解決手段】 質量%で、C:0.15〜0.35%、Si:0.30〜0.95%、Mn:0.10〜1.00%、P:0.030%以下、S:0.030%以下、Cr:1.20〜2.30%、Cu:0.30%以下、Al:0.008〜0.100%、O:0.0030%以下、N:0.0020〜0.0300%を含有し、残部Fe及び不可避不純物からなり、下記の(1)式を満足する鋼であり、図2に示す浸炭焼入焼戻しを行ない、被削性を低下させることなくねじり疲労強度に優れた機械構造用鋼からなる鋼材。
6.0%≧2C+5Si+Cr−3Mn≧2.0%・・・(1) (もっと読む)


【課題】塗装費用の削減が可能である、耐食性に優れた鋼材製海洋構造物を提供する。
【解決手段】飛来海塩粒子量が所定の境界値を超える高さ方向領域では、所定の塗膜厚さを有する塗装を施された鋼材で、飛来海塩粒子量が所定の境界値以下となる高さ方向領域では、無塗装の鋼材で構成する。なお、境界値は0.1mdd以下とする。無塗装で使用する鋼材としては、質量%で、C:0.08%未満、Si:0.75%以下、Mn:2.0%以下、P:0.030%以下、S:0.030%以下、 Al:0.01〜0.05%、N:0.010%以下を含み、さらにW:0.50〜1.0%、Nb:0.010〜0.200%、Cr:0.01〜0.10%を含有し、さらに、Cu:0.05〜0.50%、Ni:0.05〜0.50%のうちから選ばれた1種または2種を含有する鋼材とすることが好ましい。海洋構造物として、洋上構造物、なかでも洋上風力発電タワーが好適である。これにより、塗装面積が激減し、塗装作業の軽減、再塗装期間の短縮が可能となり、塗装費用が低減できる。 (もっと読む)


【課題】低い比透磁率と冷間加工性(低変形抵抗)を両立できる高Mn非磁性鋼を提供することを目的とする。
【解決手段】本発明は、C:0.40〜0.8%(質量%の意味。以下、化学組成について同じ。)、Si:0.50%以下(0%を含まない)、Mn:8〜25%、P:0.03%以下(0%を含まない)、S:0.030%以下(0%を含まない)、Al:0.010〜0.10%、N:0.0010〜0.020%を含み、残部が鉄及び不可避不純物であり、固溶状態のN量が0.001%以下(0%を含む)であると共に、組織がオーステナイト単相組織であり、結晶粒径が30〜80μmであるオーステナイト結晶粒の個数が、全オーステナイト結晶粒に対して80%以上である非磁性鋼線材又は棒鋼である。 (もっと読む)


【課題】低い比透磁率と冷間加工性(低変形抵抗)を両立できる高Mn非磁性鋼を提供することを目的とする。
【解決手段】本発明は、C:0.40〜0.8%(質量%の意味。以下、同じ。)、Si:0.1%未満(0%を含まない)、Mn:8.0〜25%、P:0.030%以下(0%を含まない)、S:0.03%以下(0%を含まない)、Al:0.001〜0.1%、N:0.003%以下(0%を含まない)を含有し、残部が鉄及び不可避不純物であることを特徴とする非磁性鋼線材又は棒鋼である。 (もっと読む)


【課題】降伏応力が390MPa超え、かつ、溶接入熱量が200kJ/cmを超える大入熱溶接を施しても溶接熱影響部の靭性に優れる溶接構造用鋼の有利な製造方法を提案する。
【解決手段】C:0.03〜0.12mass%、Si:0.02〜0.22mass%、Mn:1.4〜2.5mass%、P:0.010mass%以下、S:0.0005〜0.0040mass%、Al:0.005〜0.06mass%、Ti:0.005〜0.025mass%、N:0.0030〜0.0070mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、平衡状態でフェライト分率が30〜70vol%のフェライト−オーステナイト2相域となる温度に3〜10時間保持した後、再加熱して熱間圧延する。 (もっと読む)


【課題】本発明は、船舶のバラストタンク等の厳しい海水腐食環境下においても、耐食性を発揮して、補修塗装までの期間の延長が可能となり、ひいては補修塗装の作業軽減を図ることができる安価で耐食性に優れる船舶バラストタンク用耐食鋼材およびその製造方法を提供する。
【解決手段】質量%で、C:0.03〜0.20%、Si:0.05〜0.50%、Mn:0.7〜2.0%、P:0.035%以下、S:0.01%以下、Al:0.10%以下、Sn:0.02〜0.2%、Nb:0.003〜0.03%、Ti:0.005〜0.030%、N:0.0010〜0.010%を含有し、さらにCu、Ni、CrをそれぞれCu:0.20%未満、Ni:0.20%未満、Cr:0.20%未満とし、残部はFeおよび不可避的不純物からなる鋼素材を1000〜1350℃に加熱した後、600℃以上800℃未満の温度域で圧延を終了し、冷却する船舶バラストタンク用耐食鋼材。 (もっと読む)


【課題】大入熱溶接熱影響部のCTOD特性に優れる降伏強度390N/mm超え、板厚40mm以上の溶接構造用鋼およびその製造方法を提供する。
【解決手段】質量%でC:0.03〜0.09%、Si:0.02〜0.15%、Mn:1.5〜2.5%、Al:0.005〜0.06%、P、S、Nb:0.005〜0.025%、Ti:0.005〜0.02%、N:0.0040〜0.0070%、Ca:0.0005〜0.0030%、B:0.0005〜0.0025%、必要に応じてV、Ni、Cu、Cr、Mo、Wの一種または二種以上を含み、板厚の1/4位置におけるMnの偏析度が1.2以下かつPの偏析度が1.1以下である鋼。上記組成の鋼を、連続鋳造法により鋳造し、その際の二次冷却における凝固点近傍から1200℃までの冷却速度を0.1℃/s超え、0.5℃/s未満とし、得られた鋳片を熱間圧延後適宜冷却する。 (もっと読む)


【課題】鋼の成分、仕上げ圧延時の反力比、及び仕上げ圧延後の熱処理条件を制御することにより、レールの頭部の組織を微細化し、硬度を所定の範囲に収め、レールの耐摩耗性と延性を向上させる。
【解決手段】質量%で、C:0.65〜1.20%、Si:0.05〜2.00%、Mn:0.05〜2.00%を含有していて残部がFeおよび不可避的不純物からなるレール圧延用鋼片に対して、少なくとも粗圧延及び仕上げ圧延を行うことにより耐摩耗性および延性に優れたパーライト系レールを製造する方法であって、前記仕上げ圧延において、レール頭部表面が900℃以下〜Ar3変態点もしくはArcm変態点以上の温度範囲で仕上げ圧延して圧延直後に生成する未再結晶オーステナイト組織の生成量を面積比率で40%以上70%以下とし、その後、仕上げ圧延後のレール頭部表面を、前記仕上げ圧延終了後150sec以内に冷却速度2〜30℃/secで少なくとも550℃まで加速冷却することを特徴とする耐摩耗性および延性に優れたパーライト系レールの製造方法。 (もっと読む)


【課題】鋼板から角形鋼管を製造した場合にも表面疵が発生せず、角部においては一定以上の靭性を有し、かつ、角部以外では降伏比が80%以下である高強度鋼板の提供。
【解決手段】質量%で、C:0.05〜0.20%、Si:0.10〜0.40%、Mn:1.20〜1.50%、Al:0.003〜0.06%、Ti:0.005〜0.050%を含有し、残部がFeおよび不純物からなり、かつ下記式で定義されるCeqが0.34以上を満たす鋼素材を900〜1200℃に加熱した後、圧延を開始し、Ar点以上で圧延終了後、Ar点以下からAr点−400℃以下まで水冷し、その後、500℃以下での焼戻しする角形鋼管用鋼板の製造方法およびそれにより得られる角形鋼管用鋼板。
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14
但し、式中の各元素記号は、溶接材料中に含まれる各元素の含有量(質量%)を表す。 (もっと読む)


【課題】X65グレード以上の高強度電縫鋼管の製造が可能で、かつ低温靭性に優れた厚肉高張力熱延鋼板を提供する。
【解決手段】質量%で、C:0.02〜0.25%、Si:1.0%以下、Mn:0.3〜2.3%、P:0.03%以下、S:0.03%以下、Al:0.1%以下、Nb:0.03〜0.25%、Ti:0.001〜0.10%を含み、かつ(Ti+Nb/2)/C<4を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、表面から板厚方向に1mmの位置における組織が、ベイナイト相またはベイニティックフェライト相からなる単相でかつ粒界セメンタイトが全粒界長さに対する粒界セメンタイト長さの比率で10%以下となる組織を有し、板厚が8.7〜35.4mmである。 (もっと読む)


41 - 60 / 1,218