説明

Fターム[4K032AA40]の内容

鋼の加工熱処理 (38,000) | 鋼の合金成分及び不純物 (27,437) | 希土類金属(Yを含む) (611)

Fターム[4K032AA40]に分類される特許

21 - 40 / 611


【課題】船舶等に用いて好適な、入熱量が350kJ/cm以上の溶接熱影響部靭性および強度特性に優れ、かつ母材の引張強さが590MPa以上でvTrsが−45℃以下である高靭性大入熱溶接用鋼およびその製造方法を提供する。
【解決手段】質量%でC:0.001〜0.015%、Si:0.01〜0.80%
Mn:1.0〜2.0%、P、S、Al:0.005〜0.10%、Mo:0.30〜1.5%、B:0.0003〜0.0050%、Ti:0.005〜0.050%、N:0.0010〜0.0060%、Nb:0.01〜0.05%、更にCu、Ni、Cr、V、W、Ca、Mg、Zr、REMの1種以上を含有する鋼。上記組成の鋼素材を、950℃〜1250℃に加熱後、オーステナイト未再結晶温度域での累積圧下率:50%以上、圧延終了温度:680〜830℃の条件で熱間圧延を施し、その後1.0℃/s以上の冷却速度で580℃以下まで冷却する。 (もっと読む)


【課題】API規格X65〜X70級高強度ラインパイプ用で、優れた変形特性と溶接部靱性を兼ね備えた高強度溶接鋼管およびその製造方法を提供する。
【解決手段】特定の、母材の成分組成と溶接金属の成分組成を備え、前記母材部は、第1相がフェライトで、第2相が第1相中に面積率で5〜20%分散した平均アスペクト比が2.0以下である島状マルテンサイトで、前記島状マルテンサイトの90%以上がフェライト粒界に存在したミクロ組織を有し、前記溶接金属部は、アシキュラフェライトの面積率が80%以上かつ、島状マルテンサイトの面積率が5%以下であるミクロ組織を有する溶接鋼管。上記特定の母材成分組成を有する鋼片を、Ac以上に再加熱後、圧延終了温度Ar以上で熱間圧延し、その後、空冷して得られた鋼板を冷間成形により筒状に成形した後、Ac以上Ac以下に急速加熱し、引続き空冷あるいは水冷で室温まで冷却後、端部を溶接し、最後に拡管をする。 (もっと読む)


【課題】高強度・高靱性で、せん断加工での切断の際、切断面に発生する割れの防止に優れる厚鋼板を提供する。
【解決手段】質量%で、C:0.03〜0.12%、Si:0.01〜0.5%、Mn:1.5〜3.0%、Al:0.01〜0.08%、Nb:0.01〜0.08%、Ti:0.005〜0.025%、N:0.001〜0.01%、B:0.0005〜0.003%以下、更にCu:0.01〜2%、Ni:0.01〜3%、Cr:0.01〜1%、Mo:0.01〜1%、V:0.01〜0.1%、必要に応じて、Ca、REM、Zr、Mgの一種または二種以上、残部Fe及び不可避的不純物からなる成分組成を有し、ミクロ組織がベイナイト,マルテンサイト,ベイナイト+マルテンサイトのいずれかである厚鋼板。 (もっと読む)


【課 題】耐火鋼材とその製造方法を提供する。
【解決手段】C:0.01〜0.1%、Si:0.01〜1.0%、Mn:0.1〜2.0%、A1:0.003〜0.1%、Mo:0.010〜0.30%、Nb:0.010〜0.20%を、炭素当量Ceqが0.46以下を満足するように調整して含む鋼素材を、1000〜1350℃の範囲の温度に加熱したのち、圧延終了温度が850℃以上となる熱間圧延を行い、ついで、(Ar3変態点−30℃)〜(Ar3変態点−130℃)の範囲の温度まで空冷または加速冷却し、(Ar3変態点−30℃)〜(Ar3変態点−130℃)の温度範囲で圧下率が1.0〜10%の範囲で、少なくとも1パスの熱間圧延を行う。これにより、二相温度域での圧延により歪誘起析出が促進されて、圧延ままの状態で、粒径20nm未満の微細なNb析出物がNb換算で0.01〜0.08%の範囲で多量に析出する。粒径20nm未満の微細なNb析出物の多量析出により、火災時の高温加熱時に微細なMo炭化物の析出が促進され、低Mo系でも、高温耐力が増加し、耐火性能が顕著に増加する。 (もっと読む)


【課題】延性と伸びフランジ性に優れ、延性−伸びフランジ性のバランスも良好な高張力熱延鋼板の提供。
【解決手段】質量%で、C:0.08%超0.30%未満、Si:3.0%以下、Mn:1.0%以上4.0%以下、P:0.10%以下、S:0.010%以下、sol.Al:3.0%以下、N:0.010%以下を含有し、かつSi+sol.Alの合計含有量が0.8%以上3.0%以下の化学組成を有し、かつDαq≦5.0、Vαq≧50、Vγq≧3、Vαs>Vαq、Vγs>Vγq(DαqおよびVαqは、それぞれ鋼板表面から板厚の1/4深さ位置でのフェライトの平均粒径(μm)および面積率(%)、Vγqは同位置での残留オーステナイト体積率(%)、VαsおよびVγsはそれぞれ鋼板表面から100μm深さ位置でのフェライト面積率(%)および残留オーステナイト体積率(%)を表す)を満たす鋼組織を有する。 (もっと読む)


【課題】船舶のバラストタンク等の厳しい海水腐食環境下においても、優れた塗装耐食性を発揮して、補修塗装までの期間の延長が可能で、しかも補修塗装の作業を軽減することができる船舶用耐食鋼材を提供する。
【解決手段】質量%で、C:0.03〜0.20%、Si:0.05〜0.50%、Mn:0.7〜2.0%、P:0.035%以下、S:0.01%以下、Al:0.10%以下、Sn:0.02〜0.2%、Nb:0.003〜0.03%、O:0.0005〜0.0030%、Ti:0.005〜0.030%およびN:0.0010〜0.010%を含み、かつCu,NiおよびCrをそれぞれCu:0.20%未満、Ni:0.20%未満およびCr:0.20%未満で含有し、残部はFeおよび不可避的不純物からなる成分組成とする。 (もっと読む)


【課題】造船、建築、土木等の各種構造物で使用される鋼材、特に溶接入熱量が300kJ/cmを超える大入熱溶接に適した鋼材を提供する。
【解決手段】鋼成分組成がmass%でC:0.03〜0.10%、Si:0.50%以下、Mn:0.5〜2.5%、P:0.04〜0.08%以下、S:0.0005〜0.0040%、Al:0.003%以下、Nb:0.003〜0.04%、Ti:0.010〜0.080%、Cr:1.0%以下、N:0.0020〜0.0100%、O:0.0030〜0.0120%、必要に応じてB、Cu、Ni、Mo、V、Ca、Mg、Zr、REMの一種または二種以上を含有し、残部Fe及び不可避的不純物からなり、鋼中の、粒径1μm以下のTi酸化物および/またはTiを含む酸化物含有介在物の個数密度が300個/mm以上で、溶接入熱量300kJ/cm超えのボンド近傍の熱影響部組織における旧オーステナイト粒径が150μm以下である鋼材。 (もっと読む)


【課題】本発明は、船舶のバラストタンク等の厳しい海水腐食環境下においても、耐食性を発揮して、補修塗装までの期間の延長が可能となり、ひいては補修塗装の作業軽減を図ることができる安価で耐食性に優れる船舶バラストタンク用耐食鋼材およびその製造方法を提供する。
【解決手段】質量%で、C:0.03〜0.20%、Si:0.05〜0.50%、Mn:0.7〜2.0%、P:0.035%以下、S:0.01%以下、Al:0.10%以下、Sn:0.02〜0.2%、Nb:0.003〜0.03%、Ti:0.005〜0.030%、N:0.0010〜0.010%を含有し、さらにCu、Ni、CrをそれぞれCu:0.20%未満、Ni:0.20%未満、Cr:0.20%未満とし、残部はFeおよび不可避的不純物からなる鋼素材を1000〜1350℃に加熱した後、600℃以上800℃未満の温度域で圧延を終了し、冷却する船舶バラストタンク用耐食鋼材。 (もっと読む)


【課題】後続熱サイクルを受けない熱影響部領域における歪付与後のCTOD特性に優れた極低温用鋼材およびその製造方法を提供する。
【解決手段】質量%で、C:0.01〜0.12%、Mn:0.4〜2.0%、Ni:5.5〜8.5%、Al:0.002〜0.05%、N:0.0015〜0.004%を含有し、残部はFeおよび不純物からなり、不純物のうちのSi:0.15%以下、P:0.05%以下およびS:0.008%以下であり、かつ次の(1)式で定義されるPhardeningの値が0.54〜0.65の鋼材であって、さらに鋼材表面から0.2mm以下の領域の平均有効結晶粒径が5.0μm以下である極低温用鋼材。Phardening=0.075Si+0.217Mn+0.042Ni+0.25Cr+0.32Mo・・・・(1)式、ここで、式中の元素記号は、各元素の含有量(質量%)を表す。 (もっと読む)


【課題】X65グレード以上の高強度電縫鋼管の製造が可能で、かつ低温靭性に優れた厚肉高張力熱延鋼板を提供する。
【解決手段】質量%で、C:0.02〜0.25%、Si:1.0%以下、Mn:0.3〜2.3%、P:0.03%以下、S:0.03%以下、Al:0.1%以下、Nb:0.03〜0.25%、Ti:0.001〜0.10%を含み、かつ(Ti+Nb/2)/C<4を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、表面から板厚方向に1mmの位置における組織が、ベイナイト相またはベイニティックフェライト相からなる単相でかつ粒界セメンタイトが全粒界長さに対する粒界セメンタイト長さの比率で10%以下となる組織を有し、板厚が8.7〜35.4mmである。 (もっと読む)


【課題】破壊靭性に優れた極低温用鋼材、その製造方法およびそれを適用したLNGタンクを提供する。
【解決手段】質量%で、C:0.01〜0.12%、Si:0.01〜0.3%、Mn:0.4〜2.0%、P:0.05%以下、S:0.008%以下、Ni:5.0%を超え10.0%未満、Al:0.002〜0.08%、N:0.0015〜0.0040%を含有し、残部はFeおよび不純物からなる鋼材であって、板厚tの(1/4)t位置での残留γ量が3.0体積%以上であり、かつ次の(1)式で示される値が1.3以上であり、さらに1%の塑性歪を−165℃の環境下で受けたときの残留γ量の減少率が25%以下であることを特徴とする極低温用鋼材。σy,−165℃/σy,RT・・・・・・(1)式:ここで、σy,−165℃は−165℃における降伏強度[MPa]を、そして、σy,RTは常温における降伏強度[MPa]を、それぞれ表す。 (もっと読む)


【課題】耐サワー性に優れたラインパイプ用厚肉熱延鋼板を提供する。
【解決手段】C:0.01〜0.07%、Si:0.40%以下、Mn:0.5〜1.4%、Al:0.1%以下、Nb:0.01〜0.15%、V:0.1%以下、Ti:0.03%以下、N:0.008%以下を含み、かつNb、V、Tiが、Nb+V+Ti ≦ 0.15<0.15を満足し、さらにCm0.12以下を満足する鋼素材に、加熱温度:1100〜1250℃の範囲の温度に加熱し、930℃以下の温度域における累積圧下率が40〜85%で、仕上圧延終了温度が760〜870℃である仕上圧延を施し、板厚中心温度で、平均で30〜200℃/sの冷却速度で、表面温度で500℃以下の冷却停止温度まで冷却し、冷却停止後、放冷時間:10s超えの放冷を行い、巻取温度:400〜620℃で巻取る。これにより、ベイナイト相またはベイニティックフェライト相を面積率で95%以上含む組織を有し、板厚方向の最高硬さが220HV以下で、降伏強さ:450MPa以上の高強度と高靭性とを有し、耐サワー性に優れた厚肉高強度熱延鋼板が得られる。 (もっと読む)


【課題】被削性に優れた特性を有する高周波焼入れ用鋼を提供すること。
【解決手段】本発明の高周波焼入れ用鋼は、C:0.40〜0.65%、Si:0.010〜0.5%、Mn:0.20〜2.0%、P:0.03%以下(0%を含まない)、S:0.002〜0.10%、Cr:0.010〜0.3%、Al:0.5超〜1.0%、B:0.010超〜0.020%、N:0.002〜0.020%を含有し、残部は鉄及び不可避的不純物からなると共に、鋼の金属組織が、フェライト、パーライト及びベイナイトを有し、全組織に対するフェライト、パーライト及びベイナイトの合計面積率は95面積%以上であって、且つ全組織に対するフェライト、及びベイナイトの各面積率は、フェライトは1〜5面積%、ベイナイトは20〜50面積%であると共に、フェライト結晶粒の平均アスペクト比が5以上であって、且つ、フェライト結晶粒の粒子間距離が5〜50μmである。 (もっと読む)


【課題】レアメタルに頼らず、リサイクルした鉄源中のSnを利用して、一般耐久消費材への適用が可能な省合金型の熱間加工性と耐銹性に優れたフェライト系ステンレス鋼板を提供する。
【解決手段】質量%で、C:0.001〜0.3%、Si:0.01〜1.0%、Mn:0.01〜2.0%、P:0.005〜0.05%、S:0.0001〜0.01%、Cr:11.0〜13.0%、N:0.001〜0.1%、Al:0.0001〜1.0%、Sn:0.05〜1.0%、残部Fe及び不可避的不純物からなるフェライト系ステンレス鋼板において、式(2)で定義するγpが式(1)を満たすことを特徴とする。10≦γp≦65(1) γp=420C+470N+23Ni+7Mn+9Cu−11.5Cr−11.5Si−52Al−69Sn+189(2) ここで、C、N、Ni、Mn、Cu、Cr、Si、Al、及び、Snは、各元素の含有量。 (もっと読む)


【課題】硬度及び被削性に優れた特性を有する高周波焼入れ用鋼を提供すること。
【解決手段】本発明の高周波焼入れ用鋼は、C:0.40〜0.65%(質量%の意味、化学成分について以下同じ)、Si:0.010〜0.50%、Mn:1.0〜2.0%、P:0.03%以下(0%を含まない)、S:0.002〜0.10%、Cr:0.010〜0.3%、Al:0.06〜0.50%、B:0.0050〜0.010%、N:0.01〜0.030%を含有し、残部は鉄及び不可避的不純物からなると共に、窒化物を0.010%以上有し、且つ、鋼の金属組織が、パーライト、及びベイナイトを有し、更にフェライトを有していてもよく、全組織に対するパーライト、及びベイナイトの合計面積率は95面積%以上であって、且つ全組織に対するフェライト、及びベイナイトの各面積率は、フェライトは1面積%以下(0%を含む)、ベイナイトは20〜50面積%である。 (もっと読む)


【課題】レアメタルに頼らず、リサイクルした鉄源中のSnを利用して、一般耐久消費材への適用が可能な省合金型の熱間加工性と耐銹性に優れたフェライト系ステンレス鋼板を提供する。
【解決手段】質量%で、C:0.001〜0.3%、Si:0.01〜1.0%、Mn:0.01〜2.0%、P:0.005〜0.05%、S:0.0001〜0.02%、Cr:13.0超〜22.0%、N:0.001〜0.1%、Al:0.0001〜1.0%、Sn:0.05〜1.0%、残部Fe及び不可避的不純物からなるフェライト系ステンレス鋼板において、式(2)で定義するγpが式(1)を満たすことを特徴とする。5≦γp≦55(1)γp=420C+470N+23Ni+7Mn+9Cu−11.5Cr−11.5Si−52Al−57.5Sn+189(2) ここで、C、N、Ni、Mn、Cu、Cr、Si、Al、及び、Snは、各元素の含有量。 (もっと読む)


【課題】本発明は、乾湿繰返しかつ低pH環境下において、塗膜剥離後の腐食を抑制することができる石炭船および石炭・鉱石兼用船ホールド用の耐食鋼を提供することにある。
【解決手段】鋼材の成分組成が、C:0.010〜0.200mass%、Si:0.01〜0.50mass%、Mn:0.10〜2.0mass%、P:0.025mass%以下、S:0.005〜0.050mass%、Al:0.005〜0.10mass%、Cu:0.01〜1.0mass%、Ni:0.01〜1.0mass%、Sb:0.010〜0.50mass%、N:0.0010〜0.0080mass%を含有し、さらに残部がFeおよび不可避的不純物からなることを特徴とする石炭船および石炭・鉱石兼用船ホールド用の耐食鋼。 (もっと読む)


【課題】塩化物を含む環境における耐食性に優れる耐食性鋼材を提供する。
【解決手段】質量%で、C: 0.01〜0.2%、Si: 0.01〜1.0%、Mn: 0.05〜3.0%、P: 0.05%以下、S: 0.01%以下、Sn: 0.01〜0.5%、Al:
0.1%以下を含有し、残部Feおよび不純物からなり、かつ、Sn中の固溶Snの割合が95.0%以上であることを特徴とする、耐食性に優れた鋼材。さらに、Cu: 1.0%以下、Ni: 1.0%以下、Cr: 1.0%以下、Mo: 1.0%以下、W: 1.0%以下、Sb: 0.2%以下、Ti: 0.2%以下、Zr: 0.2%以下、Ca: 0.01%以下、Mg: 0.01%以下、Nb: 0.1%以下、V: 0.5%以下、B: 0.01%以下、REM: 0.01%以下の1種または2種以上を含有してもよい。 (もっと読む)


【課題】高いヤング率を有し、その温度係数が小さい恒弾性合金、及びこれを使用した精密機器を提供する。
【解決手段】Co20〜40%、Ni10〜20%、Cr5〜15%と、Ca、Sr、Baのそれぞれ2%以下のIIa族元素及びIIa族元素のフッ素化合物のそれぞれ1%以下の1種以上の合計0.0001〜5%、及び副成分としてMo、Wをそれぞれ10%以下、V、Nb、Ta、Cu、Mn、Ti、Zr、Hfをそれぞれ7%以下、Au、Ag、白金族元素、Al、Si、希土類元素をそれぞれ5%以下、Be3%以下、B、Cをそれぞれ1%以下の1種以上の合計0.001〜15%を含有する合金を、900℃以上融点未満の温度で焼鈍した後冷却し、加工率50%以上の線引き加工を施して所望の太さの線材とし、550〜720℃の温度で加熱する。ヤング率190GPa以上及び0〜40℃におけるヤング率の温度係数(-5〜5)×10−5を有する。 (もっと読む)


【課題】高強度と良好な延性及び伸びフランジ性とを併せ持つ熱延鋼板の提供。
【解決手段】質量%で、C:0.08%超0.30%未満、Mn:1.0〜4.0%、Si:0.10%以上3.0%未満、sol.Al:0.01〜3.0%、但し、Siおよびsol.Alの合計量=0.8〜3.0%、P:0.05%以下、S:0.01%以下およびN:0.01%以下を含有し、残部がFeおよび不純物からなる化学組成を有し、鋼板表面から板厚の1/4深さ位置における鋼組織が、面積%で、ベイナイト:40%以上、ポリゴナルフェライト:2.0%以上50%未満および残留オーステナイト:3%以上を含有し、残部が15.0%以下であって、かつ残留オースナイトを除く鋼組織において15°以上の結晶方位差を有する粒界で囲まれる粒の平均粒径が15μm以下であり、板厚が1.2mm超6mm以下である。 (もっと読む)


21 - 40 / 611