説明

Fターム[4K058CA05]の内容

金属の電解製造 (5,509) | 溶液電解(電解精製、電解採取) (831) | 電解液 (585) | 主成分 (314) | 酸、その塩 (267) | HCl系 (79)

Fターム[4K058CA05]に分類される特許

21 - 40 / 79


【課題】陽極上への副反応生成物の蓄積と、それに起因する電解電圧の上昇を抑制することができる電解採取システム、およびこのシステムを用いた電解採取方法を提供する。
【解決手段】本発明に係る電解採取システムは、電解液中に配置された陽極と陰極との間に所定の電解電流を流して、該陰極上に所望の金属を析出させるものであって、電解液は、上記所望の金属のイオンを含む硫酸系または塩化物系の水溶液であり、陽極は、非晶質の酸化イリジウムまたは非晶質の酸化ルテニウムを含む触媒層を導電性基体上に形成したものである。 (もっと読む)


本発明は、金属類を回収するための、特に地方自治体の廃棄物焼却プラント(4)などの焼却プラントからの炉底灰から金属類を回収するための、プロセスおよび装置に関する。本発明によると、灰を含有した原料が酸化ユニット(1)に送り込まれ、そこで前記金属類の少なくとも一部が1種以上の酸および少なくとも1つの酸素供与体の存在下で酸化され、これにより、金属イオン類を含む流れが生じる。この流れから特定の金属類が溶媒抽出ユニット(2)で選択および濃縮され、その後に電解採取ユニット(3)で金属形態に変換される。 (もっと読む)


【課題】電解廃液中のClを真空脱ガス法のみにより除去し、活性炭により吸着除去することなく、繰り返して用い、Clを吸着した活性炭廃棄物を発生させない安価な硫黄含有電気ニッケルの製造方法の提供を課題とする。
【解決手段】塩化ニッケル溶液と電解廃液とを混合して混合溶液を得、これにチオ硫酸ナトリウムを添加して電解給液を得、隔膜電解法を用いて硫黄含有電気ニッケルを得るに際して、混合溶液中のClを還元するに足る量のチオ硫酸ナトリウムを式1にて求め、この量と電解給液中のチオ硫酸ナトリウム濃度を0.006〜0.012g/Lとするための量との合量を混合溶液に添加する。
[式1]
0.0555×X−1.59≦Y≦0.0675×X−1.815−−−式1
ここにおいて、X(g/L)は電解給液液中のニッケル濃度であり、Y(mg)は前記(イ)に繰り返される電解廃液1lに含まれるClを還元するのに必要とされるチオ硫酸ナトリウム量である。 (もっと読む)


【課題】液晶基板等をエッチング又は酸洗した塩化鉄系廃液の処理を行うに際し、これまで着目されていなかった硝酸を含有する塩化鉄系廃液を処理対象とし、当該塩化鉄系廃液からインジウムを金属単体又は合金として効果的に回収することが可能な塩化鉄系廃液の処理方法を提供する。
【解決手段】少なくともインジウム及び塩化第二鉄を含有する塩化鉄系廃液の処理方法であって、塩化鉄系廃液は硝酸を含有するものであり、塩化鉄系廃液に塩酸及び鉄を添加することにより、硝酸を還元除去するとともに、塩化第二鉄を塩化第一鉄に還元する還元工程と、還元された塩化鉄系廃液からインジウムを金属単体又は合金として回収する回収工程と、を包含する。 (もっと読む)


【課題】硫酸等の酸性溶液に容易に溶解し、しかも溶解時の未溶解残渣の発生が少ない、酸溶解性に優れた電気コバルトを製造する方法を提供する。
【解決手段】電解精製又は電解採取により得た電気コバルトを、不活性雰囲気下に、500〜1200℃の温度で加熱処理に付し、次いで、その温度から、毎時5〜20℃の冷却速度で、室温〜100℃の温度まで冷却することを特徴とする。また、前記工程(1)において、加熱時間は、5〜15時間であることを特徴とする。 (もっと読む)


【課題】 硫黄含有電気ニッケルを製造する際に、硫黄含有電気ニッケルの切断工程での電着部分の割れの発生を抑制でき、切断時の割れによる不良発生率を大幅に低減することができる硫黄含有電気ニッケルの製造方法を提供する。
【解決手段】 隔膜を施したアノードボックスに不溶性陽極を挿入し、隔膜を施したカソードボックスに陰極を挿入して、塩化ニッケルを主成分とし且つチオ硫酸ナトリウムを含む電解液をカソードボックス内に給液し、アノードボックス内の電解液を発生する塩素ガスと共に系外に排出しながら電解する。その際、電解槽内の電解液のpHを、1.5より大きく且つ2.5より小さいの範囲に制御する。 (もっと読む)


【課題】塩化鉄系廃液を再生するに際し、これまで着目されていなかった当該塩化鉄系廃液に含まれる鉛を効果的に除去することが可能な塩化鉄系廃液の再生方法、及び塩化鉄系廃液の再生装置を提供する。
【解決手段】電解膜1を介して陰極2を配置した陰極室3と陽極4を配置した陽極室5とに仕切られた電解槽10を用いて行う塩化鉄系廃液の再生方法であって、陰極室3と別に設けた液回収槽20との間で鉛を含有する塩化鉄系廃液を循環させる循環工程と、陰極室3において、1.11A/dm以下の電流密度で塩化鉄系廃液を電解処理して鉛を析出させる電解工程と、陰極室3に析出した鉛を除去する鉛除去工程と、鉛を除去して得られた再生塩化鉄液を、液回収槽20又は陰極室3から回収する回収工程とを包含する塩化鉄系廃液の再生方法を実行する。 (もっと読む)


【課題】高密度化及び高容量化が必要な半導体装置で使用されるはんだ材料に対し、α線の少ない高純度錫または錫合金若しくは高純度錫の製造方法の提供。
【解決手段】U、Thのそれぞれの含有量が5ppb以下、Pb、Biのそれぞれの含有量が1ppm以下であり、純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)であり、鋳造組織を持つ高純度錫のα線カウント数が0.001cph/cm2以下に低減させた高純度錫又は錫合金である。原料となる錫を酸で浸出させた後、この浸出液を電解液とし、該電解液に不純物の吸着材を懸濁させ、原料Snアノードを用いて電解精製を行う、錫合金及び高純度錫の製造方法。 (もっと読む)


本発明は、二次酸化亜鉛、例えば、WaelzまたはPrimus酸化物からハロゲン化物、特に、塩化物およびフッ化物を除去するための方法であって、(1)二次酸化亜鉛を炭酸ナトリウムで洗浄し、固体物質を塩基性液体から分離する工程、(2)工程1からの固体物質の少なくとも一部を、好ましくは2.5から4のpHまでの、HSOにより浸出し、固体物質を酸液体から分離する工程、および(3)工程2からの液体を、好ましくはpH<4で、残留フッ化物を除去するためにAl3+およびPO3−イオンおよび中和剤を添加することによって処理し、フッ化物を含有する固体物質から液体を分離する工程を含む方法に関する。
(もっと読む)


【課題】有害物質を極力低減させるとともに、成膜時のパーティクルの発生数が少なく、膜厚分布が均一であり、かつ4N(99.99%)以上の純度を持ち、半導体メモリーのキャパシタ用電極材を形成する際に好適なスパッタリングターゲット製造用高純度Ru粉末、該高純度Ru粉末を焼結して得たスパッタリングターゲット及び該ターゲットをスパッタリングして得た薄膜並びに前記高純度Ru粉末の製造方法を提供する。
【解決手段】Na、Kなどのアルカリ金属元素の各含有量が10wtppm以下、Alの含有量が1〜50wtppmであることを特徴とする高純度Ru粉末、及び純度3N(99.9%)以下のRu原料をアノードとし、溶液中で電解して精製する、同高純度Ru粉末の製造方法。 (もっと読む)


【課題】 インジウムイオンを含有する水溶液から金属インジウムを、電解採取により経済的に製造する。
【解決手段】 電解槽10内を陽イオン交換膜11により陽極室12と陰極室13とに仕切る。不溶性の陽極14を配置した陽極室12の電解液をアルカリ金属の水酸化物水溶液とし、陰極室13の電解液をインジウムイオンを含有する水溶液として、陰極室13おいて金属インジウムを析出させる。安価な陽極14の使用が可能となる。電解液のpH調整が不要となる。陽極側での塩素ガスの発生がない。インジウムの電解採取に要する電圧が下がり、電流効率が上がる。 (もっと読む)


【課題】+2価のコバルトイオンを含む水溶液から電解によって陰極上へコバルトを析出させるコバルトの電解採取に用いられる陽極であって、電解によるオキシ水酸化コバルトの陽極上への析出を抑制することが可能なコバルトの電解採取用陽極の提供を目的とし、また電解採取時にオキシ水酸化コバルトが陽極に析出することを抑制することが可能なコバルトの電解採取法の提供を目的とする。
【解決手段】本発明のコバルトの電解採取用陽極は、非晶質の酸化イリジウムまたは非晶質の酸化ルテニウムを含む触媒層が導電性基体上に形成されたコバルトの電解採取用陽極である。また、本発明のコバルトの電解採取法は、非晶質の酸化イリジウムまたは非晶質の酸化ルテニウムを含む触媒層を導電性基体上に形成した電解採取用陽極を用いるコバルトの電解採取法である。 (もっと読む)


【課題】配線材料等に用いた場合の加工性に優れ、またフィラー等として用いた場合に嵩密度を低く抑えることができる細くて非常に長い超微細金属線状体を提供すること。
【解決手段】超微細金属線状体は、一方向に延び、太さが20〜1000nmである超微細金属線状体であって、該線状体は、自在に屈曲するのに足る十分な長さを有することを特徴とする。この線状体は、金属のイオンを、非水電解液中で安定な錯体の状態で、該非水電解液中に存在させた状態下に電解還元することで好適に製造することができる。この場合、カソードとして線材を用い、該線材の先端部をアノードに対向させた状態下に電解還元することが好適である。 (もっと読む)


【課題】 生産性を高めるために高電流密度化を図っても、電着物の母板面に黒い変色した部分が生じない特殊形状メッキ用電気ニッケルの製造方法の提供を目的とする。
【解決手段】 特殊形状の電析が得られるように表面をマスキングして電着部を設けたカソードを用い、硫黄源を含み、ニッケル濃度68〜95g/l、pH2.4〜4.0の塩化ニッケル溶液を電解液とし、電流密度を1100〜1350A/m2とし、望ましくは、電流密度をX(A/m2)とし、塩化ニッケル溶液中のニッケル濃度をY(g/l)としたときに、電流密度Xとニッケル濃度Yとが下記式で示される関係を満たすようにする。
Y≧0.03X + 35.63 (もっと読む)


【課題】塩化浴での電解採取法により得られる銅粉中に含有される塩素を効率的に除去する方法を提供する。
【解決手段】塩化浴で電解採取された、塩素を含有する銅粉を、洗浄液として、まず食塩水を、次いで硫酸溶液を、最後に温水を用いた洗浄に付すことを特徴とする。前記食塩水の塩素濃度は、50〜200g/Lであり、前記硫酸溶液の硫酸濃度は、5〜15質量%あることを特徴とする。さらに、前記銅粉は、その比表面積が0.05m/g以下であることを特徴とする。 (もっと読む)


【課題】粒子径が小さく、粒度分布が比較的狭く、分散安定性に優れかつデンドロイト化が抑制された銅微粒子を、簡便な方法でかつ大量に生成することのできる金属微粒子の製造方法を提供する。
【解決手段】少なくとも、銅イオン、アルカリ金属イオン、及び有機物分散媒が溶解している還元反応溶液において、銅イオンの電解還元反応により一次粒子の粒子径が1〜500nmの範囲にある銅微粒子を析出させることを特徴とする、銅微粒子の製造方法。 (もっと読む)


【課題】銅原料を塩素浸出する工程、得られた塩化物水溶液を還元する工程、溶媒抽出方法により銅を分離する工程、及び銅イオンを電解採取する工程を含む湿式銅製錬法に用いる、抽出段と逆抽出段からなる溶媒抽出方法において、逆抽出段において、抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と銅電解陰極廃液からなる水相を接触混合して銅を逆抽出することにより形成される抽出剤中の残留銅濃度を極力させることができる溶媒抽出方法を提供する。
【解決手段】前記抽出段において、還元後の塩化物水溶液とトリブチルフォスフェイトを含む抽出剤を接触混合し、次いで前記逆抽出段において、該抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と前記銅電解陰極廃液からなる水相を接触混合して銅を逆抽出する際に、逆抽出後の水相の酸化還元電位(銀/塩化銀電極基準)を300〜400mVになるように制御することを特徴とする。 (もっと読む)


【課題】鉄イオンを含む酸性塩化物水溶液から電解採取法によって金属鉄を回収する際に、電解槽の槽電圧の低減を図り、電力コストが低い電解処理を行うことができる経済的な電解採取方法を提供する。
【解決手段】隔膜2で仕切られたカソード室3とアノード室4から構成される電解槽1を用いて、鉄イオンを含む酸性塩化物水溶液をカソード室3に供給し、鉄イオンの一部を電解析出させ、続いて隔膜2を通して酸素発生型の不溶性アノード6を備えたアノード室4に導き、鉄イオンを酸化させた後、アノード室4から排出させることにより、鉄を電解採取する方法において、前記電解槽1内での酸性塩化物水溶液の温度を、65〜90℃に制御するとともに、前記不溶性アノード6の表面上の電解液を、アノード表面でのアノード反応のため必要な鉄イオンの供給がなされるのに十分に、強制的に流動させることを特徴とする。 (もっと読む)


【課題】塩化第1銅を含む酸性水溶液から、給液中の銅濃度を極力低くしても、鉄の混入が少ない良好な析出状態の電着銅を得ることができる電解採取方法を提供する。
【解決手段】陰極室1、陽極室2、及び陽極室の側壁両面に設けられて両室を分離する隔膜から構成される電解槽を用いる隔膜電解法により、陰極室1に塩化第1銅を含む酸性水溶液を給液し、陽極室2に塩化鉄水溶液を給液して、銅を電解採取する方法において、前記陰極室1への給液は、陰極室1内の電解液上部に位置する陰極給液口4で行い、一方陰極室1からの排液は、陰極3の下端側の下部の電解液をサイフォン6により陰極排液口5からオーバーフロー方式で排出するとともに、陰極室内の電解液の銅濃度は、15〜50g/Lに制御することを特徴とする。 (もっと読む)


【課題】 鉛品位を1 mass %以下に予め調整したビスマスメタルアノードから、カソード電着物中の鉛品位が0.01 mass %以下の精製ビスマスを得るビスマスの電解精製方法を提供する。
【解決手段】 鉛品位を1 mass %以下に予め調整したビスマスメタルをアノードにし、カソードにチタン板を用い、電解液は、塩酸溶液中にビスマスを10〜30 g/l、電流密度を150 A/m2以下とした条件でビスマス電解精製を行うことで、槽電圧の安定した状態で電解を行うことができ、カソード電着物中の鉛品位が0.01 mass %以下の精製ビスマスを得るビスマスの電解精製方法。 (もっと読む)


21 - 40 / 79