説明

Fターム[4M104FF27]の内容

半導体の電極 (138,591) | 構造 (12,435) | コンタクト面の位置、配置 (799) | 基板の凹部 (569)

Fターム[4M104FF27]に分類される特許

201 - 220 / 569


【課題】閾値電圧(Vth)のばらつきの発生を抑制した、ゲートリセスの形成方法、ノーマリオフ型のAlGaN/GaN−HEMTの製造方法及びAlGaN/GaN−HEMTを提供する。
【解決手段】光電気化学エッチングにより、バンドギャップエネルギーが、ゲート開口部19から層方向に変化する半導体層の表面から前記半導体層内の所定の半導体層のバンドギャップエネルギーに相当するエネルギーを有するUV光を照射しながら、SiN表面保護層17の前記ゲート開口部から前記半導体層内の所定のバンドギャップエネルギーの半導体層をエッチングすることを特徴とするゲートリセス20の形成方法。 (もっと読む)


【課題】異種基板上に高品質半導体結晶からなる島状のGaN系半導体層を基板の湾曲を抑えて成長させることができ、しかもGaN系半導体層が極めて厚くてもクラックなどの発生を抑えることができ、大面積の半導体素子を容易に実現することができる半導体素子およびその製造方法を提供する。
【解決手段】半導体素子は、GaN系半導体と異なる物質からなる基板11と、基板11上に直接または間接的に設けられ、一つまたは複数のストライプ状の開口12aを有する成長マスク12と、成長マスク12を用いて基板11上に(0001)面方位に成長された一つまたは複数の島状のGaN系半導体層13とを有する。成長マスク12のストライプ状の開口12aはGaN系半導体層13の〈1−100〉方向に平行な方向に延在している。 (もっと読む)


【課題】ゲート電極からチャネル層までの距離のばらつきが低減されたHEMT半導体装置およびその製造方法を提供する。
【解決手段】半導体装置の製造方法は、リセスエッチング工程後に酸化膜形成工程を行う。リセスエッチングを行った後に、HEMT構造基板の加熱や過酸化水素への浸漬によって、強制的に酸化膜6’’及び7’’を形成する。このような酸化膜6’’及び7’’は、面内均一性に優れ、かつ、ある厚さで安定するため、大気中に暴露してもそれ以上酸化は進まない。酸化膜6’’及び7’’は、例えば、濃度3%の過酸化水素水にHEMT構造基板を3分間浸漬させることや、120℃のホットプレート上で2分間HEMT構造基板を加熱させることにより形成することができる。 (もっと読む)


【課題】ソース/ドレイン領域のPN接合部とコンタクト間のリーク電流を抑制する。
【解決手段】半導体基板(1)と、半導体基板(1)に形成されたSTI(Shallow Trench Isolation)構造(2)と、半導体基板(1)に形成され、STI構造(2)に隣接する拡散領域(12)と、層間絶縁膜(15)を貫通して拡散領域(12)とSTI構造(2)とに到達する接続コンタクト(20)と、拡散領域(12)の側面と拡散領域(12)の下の半導体基板(1)の側面に形成され、接続コンタクト(20)と拡散領域(12)の側面とを電気的に絶縁し、かつ、接続コンタクト(20)と半導体基板(1)の側面とを電気的に絶縁する酸化膜(19)とを具備する半導体装置を構成する。その半導体装置では、STI素子分離とソース/ドレイン領域のPN接合部分の間のみに選択的に絶縁膜(酸化膜)を形成している。 (もっと読む)


【課題】本発明は、ウエハが反るのを防止できる半導体装置及びその製造方法を提供することを目的とする。
【解決手段】本発明に係る半導体装置は、互いに対向する第1及び第2の主面を有するGaAs基板と、前記GaAs基板の前記第1の主面上に形成され、Pd、Ta、Moの少なくとも1つから構成された第1の金属層と、前記第1の金属層上に形成され、Ni系合金又はNiから構成された第2の金属層と、を備えることを特徴とする。 (もっと読む)


【課題】機械的強度やチップ・クラックによる歩留の低下を抑制し、オン抵抗やパッケージ実装状態における熱抵抗が低い半導体装置およびその製造方法を提供する。
【解決手段】半導体基板1と、半導体基板1の主面上に形成された半導体層3と、半導体基板1の裏面上に形成されたオーミック電極12と、オーミック電極12を介して半導体基板1の裏面上に形成され、半導体基板1よりも熱伝導率の高い金属材料からなる裏面電極13とを備え、半導体基板1の裏面の一部には凹部1aが形成され、裏面電極13は、オーミック電極12を介して、半導体基板1の裏面における凹部1aの内部を埋め、半導体基板1の裏面において凹部1a以外の領域の少なくとも一部を覆っている。 (もっと読む)


【課題】トランジスタを構成する各部材の抵抗を小さくし、トランジスタのオン電流の向上を図り、集積回路の高性能化を図ることを課題の一とする。
【解決手段】単結晶半導体基板上に絶縁層を介して設けられ、素子分離絶縁層によって素子分離されたn型FET及びp型FETを有する半導体装置であって、それぞれのFETは、半導体材料を含むチャネル形成領域と、チャネル形成領域に接し、半導体材料を含む導電性領域と、導電性領域に接する金属領域と、チャネル形成領域に接するゲート絶縁層と、ゲート絶縁層に接するゲート電極と、金属領域を一部に含むソース電極またはドレイン電極と、を有する。 (もっと読む)


【課題】ゲート電極にバイアス方向バイアスを印加した際におけるゲートリーク電流を低減した窒化物半導体装置を実現できるようにする。
【解決手段】窒化物半導体装置は、基板101の上に順次形成された第1の窒化物半導体層104及び第2の窒化物半導体層105を含む半導体層積層体103を有している。半導体層積層体103の上には、p型の第3の窒化物半導体層108が選択的に形成されており、第3の窒化物半導体層108の上にはゲート電極109が形成されている。半導体層積層体103の上における第3の窒化物半導体層108の両側方には、それぞれ第1のオーミック電極106及び第2のオーミック電極107が形成されている。第1のゲート電極109は第3の窒化物半導体108とショットキー接触している。 (もっと読む)


少なくとも1つのMOS電界効果トランジスタとダイオードとを含んでいる半導体デバイスであって、前記ダイオードはトレンチジャンクションバリアショットキーダイオード(TJBS)であり、モノリシックに組み込まれている構造体としてMOS電界効果トランジスタとトレンチジャンクションバリアショットキーダイオード(TJBS)を備えた構造が実現される。前記MOS電界効果トランジスタおよび前記トレンチジャンクションバリアショットキーダイオード(TJBS)のアバランシェ電圧は、前記MOS電界効果トランジスタがアバランシェにおいて動作可能であるように選択されている。
(もっと読む)


III族窒化物トランジスタ・デバイスを形成する方法は、III族窒化物半導体層上に保護層を形成するステップと、III族窒化物半導体の一部を露出するように保護層を貫通するビアホールを形成するステップと、保護層上にマスキングゲートを形成するステップとを含む。マスキングゲートは、ビアホールの幅より大きい幅を有する上部を含み、ビアホールの中に延びる下部を有する。この方法はさらに、マスキングゲートを注入マスクとして用いて、III族窒化物層内にソース/ドレイン領域を注入するステップを含む。 (もっと読む)


【課題】トランジスタを構成する各部材の抵抗を小さくし、トランジスタのオン電流の向上を図り、集積回路の高性能化を図ることを課題の一とする。
【解決手段】単結晶半導体基板上に絶縁層を介して設けられ、素子分離絶縁層によって素子分離されたn型FET及びp型FETを有する半導体装置であって、それぞれのFETは、半導体材料を含むチャネル形成領域と、チャネル形成領域に接し、半導体材料を含む導電性領域と、導電性領域に接する金属領域と、チャネル形成領域に接するゲート絶縁層と、ゲート絶縁層に接するゲート電極と、金属領域を一部に含むソース電極またはドレイン電極と、を有する。 (もっと読む)


【課題】過電圧に伴う破壊を抑制することができる半導体装置及びその製造方法を提供する。
【解決手段】半導体装置の一態様には、互いに並列に接続され、ゲート電極10、ソース電極9及びドレイン電極15を備えた複数の縦型トランジスタ32と、前記複数の縦型トランジスタ32を個別に取り囲むダイオード31と、が設けられている。前記ソース電極9に前記ダイオード31のアノード11が接続され、前記ドレイン電極15に前記ダイオードのカソード1が接続されている。 (もっと読む)


【課題】III-V族窒化物半導体に設けるオーミック電極のコンタクト抵抗を低減しながらデバイスの特性を向上できるようにする。
【解決手段】半導体装置(HFET)は、SiC基板11上にバッファ層12を介在させて形成された第1の窒化物半導体層13と、該第1の窒化物半導体層13の上に形成され、該第1の窒化物半導体層13の上部に2次元電子ガス層を生成する第2の窒化物半導体層14と、該第2の窒化物半導体層14の上に選択的に形成されたオーム性を持つ電極16、17とを有している。第2の窒化物半導体層14は、底面又は壁面が基板面に対して傾斜した傾斜部を持つ断面凹状のコンタクト部14aを有し、オーム性を持つ電極16、17はコンタクト部14aに形成されている。 (もっと読む)


実施形態には、これに限定されないが、第1バリア層と、該第1バリア層上の窒化ガリウムチャネル層と、該窒化ガリウムチャネル層上に存在し、第1サブレイヤーと第2サブレイヤーと第3サブレイヤーとを備える第2バリア層と、を有するヘテロ構造を備える装置とシステムが含まれる。該第1バリア層、第1サブレイヤーおよび第3サブレイヤーは各々アルミニウムを含んでいてもよい。他の実施形態も、本明細書に記載され特許請求される。 (もっと読む)


【課題】LDMOSFETを有する半導体装置では、ソース電極が裏面にあることから、表面のソース・コンタクト領域と裏面のソース電極間の電気抵抗を低減するため、上面からP型エピタキシャル層を貫通してP+型基板内に伸びるボロンを高濃度にドープしたポリ・シリコン埋め込みプラグが設けられている。このポリ・シリコン埋め込みプラグの周辺のシリコン単結晶領域に転位が発生しており、これにより、リーク不良が誘発されていることが明らかとなった。
【解決手段】本願発明は、相互に不純物濃度の異なる第1及び第2の半導体層の境界面を貫通するシリコン系プラグを有する半導体装置であって、このプラグの少なくとも内部は多結晶領域であり、この多結晶領域表面の内、先の境界面の両側近傍は、固相エピタキシャル領域で覆われている。 (もっと読む)


【課題】逆方向バイアス印加時のリーク電流を増加させることなく、順方向バイアス印加時の定常損失を低減するショットキーダイオードを有する半導体装置を提供する。
【解決手段】第1の半導体3は基板2の主表面に形成されている。第2の半導体層4は第1の半導体層3の表面に形成され、第1の半導体層3と同じ導電型を有し、第1の半導体層3よりも高い不純物濃度を有している。逆方向バイアスとなるように電圧を印加した場合に、ショットキー金属層5と第2の半導体層4との界面で生じる空乏層7が第2の半導体層4の厚み方向に延びて第1の半導体層3に達する程度に第2の半導体層4は薄い厚みを有している。第2の半導体層4の表面に凹凸が形成されており、ショットキー金属層5が第2の半導体層4内に形成された凹凸の凹部および凸部との双方にショットキー接触している。 (もっと読む)


【課題】半導体装置において、導電性バッファ層を用いることなく、煩雑なプロセスも必要なく、非常に高い深さ精度のドライエッチングも必要なく、また、結晶性を劣化させずに、効率良くホールを引き抜くことができるようにする。
【解決手段】半導体装置を、同一基板1上に形成され、(0001)面及び(000−1)面を有する窒化物半導体層4と、基板1と窒化物半導体層4との間に部分的に設けられた(0001)面形成層2と、(0001)面を有する窒化物半導体層4上に設けられたソース電極5、ドレイン電極6及びゲート電極7と、(000−1)面を有する窒化物半導体層4上に設けられたホール引き抜き電極8とを備えるものとする。 (もっと読む)


【課題】精度良く加工された窒化物半導体装置を実現できるようにする。
【解決手段】窒化物半導体装置は、基板101の上に形成された第1の窒化物半導体層107と、第1の窒化物半導体層107の上に形成された欠陥導入層108と、欠陥導入層108の上に接して形成され、欠陥導入層108を露出する開口部を有する第2の窒化物半導体層109とを備えている。欠陥導入層108は、第1の窒化物半導体層107及び第2の窒化物半導体層109と比べて結晶欠陥密度が大きい。 (もっと読む)


【課題】低コストかつ低抵抗の半導体装置およびその製造方法を提供すること。
【解決手段】基板と、前記基板上に形成された半導体層と、前記半導体層上に形成され、該半導体層の表面方向における幅が該半導体層の表面と垂直方向における高さ以上である櫛歯状の電極と、を備える。また、基板上に半導体層を形成する半導体層形成工程と、前記半導体層上に、前記半導体層の表面方向における幅が該半導体層の表面と垂直方向における高さ以上である櫛歯状の電極を形成する電極形成工程と、を含む。 (もっと読む)


【課題】消費電流及び抗折強度に優れる半導体装置の製造方法を実現する。
【解決手段】
半導体装置の製造方法は、第1面の表面部に設けられた拡散領域12を備える半導体基板11を準備する工程(a)と、半導体基板11の第1面上に第1金属配線14a及び14bを形成する工程(b)と、半導体基板11を厚さ方向に貫通する貫通孔15を形成する工程(c)と、貫通孔15内に、第1金属配線14bの裏面から半導体基板11の第2面にまで延びる貫通電極16を形成する工程(d)と、半導体基板11の第2面に凹部17を形成する工程(e)と、凹部17内に、貫通電極16と電気的に接続された第2金属配線18を形成する工程(f)とを備える。 (もっと読む)


201 - 220 / 569