説明

Fターム[5E040CA01]の内容

硬質磁性材料 (8,571) | 磁気特性・用途 (1,594) | 硬質(磁石用) (997)

Fターム[5E040CA01]に分類される特許

81 - 100 / 997


【課題】拡散材として使用する希土類化合物の量を低減しても十分に高い保磁力を有する異方性磁粉を製造する。
【解決手段】異方性磁粉の製造方法は、水素化分解・脱水素再結合法によってHDDR粉を得る工程と、希土類化合物を含む拡散材とHDDR粉を混合して混合粉末を調製する工程と、混合粉末を加熱して拡散材に含まれる元素をHDDR粉に拡散させる工程とを備え、拡散材は、Dy、Tb、Nd、Pr又はLaの水素化物、フッ化物及び鉄化合物からなる群から選ばれる少なくとも一種の化合物の粉末を含有し且つアルミニウム粉末を更に含有する。 (もっと読む)


【課題】耐環境性に優れたボンド磁石等が得られる希土類磁石粉末を提供する。
【解決手段】本発明の希土類磁石粉末は、希土類元素(R)とホウ素(B)と遷移元素(TM)との正方晶化合物であるRTM14型結晶の集合体である基本磁石粒子と、この基本磁石粒子の表面を被覆する熱硬化性樹脂が熱硬化してなる熱硬化樹脂被膜と、により構成される被覆磁石粒子からなることを特徴とする。この希土類磁石粉末を用いて製造されたボンド磁石は、耐酸化性に優れた熱硬化樹脂被膜で被覆された被覆磁石粒子からなるため耐環境性に優れ、厳しい環境下に曝されても磁気特性が劣化し難い。こうして本発明の希土類磁石粉末を用いれば、非常に耐環境性に優れるボンド磁石が得られる。 (もっと読む)


【課題】重希土類元素の使用量を増やさなくても十分に高い保磁力を有するR−T−B系希土類焼結磁石を提供すること。
【解決手段】R14Bを含む結晶粒を主相10として含有し、粒界三重点にR−T−M系化合物12を有するR−T−B系希土類焼結磁石100。
(但し、Rは希土類元素、TはFe、Co及びCuから選ばれる少なくとも一種の元素、Bはホウ素、Rは軽希土類元素、並びにMはAl,Zn及びGaから選ばれる少なくとも一種の元素をそれぞれ示す。) (もっと読む)


【課題】HDDR磁粉を用い、重希土類元素の使用を抑えつつ、高い保磁力をもったR−T−B系永久磁石の製造方法を提供する。
【解決手段】HDDR法によるR−T−B系粉末(Rは、Nd及び/又はPrをR全体に対して95原子%以上含む希土類元素、TはFe又はFeの一部をCo及び/又はNiで置換した、Feを50原子%以上含む遷移金属元素)と、R’(Nd及び/又はPrをR’全体に対して90原子%以上含み、DyおよびTbを含まない希土類元素)と25原子%以上65原子%以下のAlからなるR’−Al系合金粉末とを準備する。R−T−B系粉末に対するR’−Al系粉末の質量比を1/10以下とした混合粉末を、R214B相のキュリー点以下の温度で成形した圧粉体を550℃以上R’−Al系合金粉末の液相滲み出し開始温度Tp以下で熱間圧縮成形し、不活性雰囲気または真空中において550℃以上900℃以下の温度で熱処理する。 (もっと読む)


【課題】HDDR磁性粉を用いて異方性ボンド磁石を作製するにあたり、磁気特性を向上させるとともに、寸法精度の良好な異方性ボンド磁石を製造すること。
【解決手段】第1の希土類元素を含む原料に水素化分解・脱水素再結合法による処理を施して、希土類化合物粉末を作製する工程(ステップS12)と、第1の希土類元素とは異なる第2の希土類元素を含む拡散剤を前記第1の希土類元素に混合して、混合粉末を調整する工程(ステップS14)と、混合粉末を磁場中で加圧及び加熱しながら成形して成形体を作製する工程(ステップS15)と、成形体に樹脂を含浸させる工程と(ステップS16)、樹脂を硬化させる工程(ステップS17)と、を含むことを特徴とする。 (もっと読む)


【課題】磁気特性に優れる磁石に利用できる磁性体及びその製造方法を提供する。
【解決手段】磁性体4は、磁性相13と、磁性相13間に磁気相互作用が生じないように介在される無機相12とにより実質的に構成される。磁性相13は、α”Fe16N2相を80体積%以上含有する。無機相12は、例えば、AlNi成分により構成される。素材としてFeAlNi系合金からなる粉末を成形した粉末成形体2を準備し、粉末成形体2に熱処理を施して、Fe相11と、AlNi成分を主体とする無機相12とに分離する。相分離処理材3に加圧状態で窒素雰囲気中で熱処理を施して、Fe相11中のFeを窒化してα”Fe16N2相を生成することで磁性体4が得られる。磁性相の主成分が磁気特性に優れるα”Fe16N2相であるため、磁性体4は、磁気特性に優れる。磁性体4は、Coを実質的に含有しないことで、製造コストを低減できる。 (もっと読む)


【課題】Dy等の拡散元素を表面部から内部まで効率的に拡散させることができる希土類磁石の製造方法を提供する。
【解決手段】本発明の希土類磁石の製造方法は、希土類合金粒子の成形体または焼結体からなる磁石材の表面部に内部へ拡散し得る拡散元素を付着させる付着工程と、磁石材を真空中で加熱して磁石材の表面部に滞留した拡散元素の少なくとも一部を蒸発させる蒸発工程と、を備えることを特徴とする。付着工程は蒸着工程であり、蒸発工程は蒸着工程に続けて磁石材だけを真空中で加熱する加熱工程であると好ましい。この製造方法によれば、稀少なDy等の使用量を抑制しつつ、希土類磁石の保磁力の向上を図ることができる。換言すると、本発明により保磁力効率が著しく大きい希土類磁石が得られる。 (もっと読む)


【課題】磁気特性に優れる磁石に利用できる磁性体及びその製造方法を提供する。
【解決手段】磁性体4は、磁性相13と、磁性相13間に磁気相互作用が生じないように介在される無機相12とにより実質的に構成される。磁性相13は、α”Fe16N2相を80体積%以上含有する。無機相12は、例えば、CrCo成分により構成される。素材としてFeCrCo系合金からなる粉末を成形した粉末成形体2を準備し、粉末成形体2に熱処理を施して、Fe相11と、CrCo成分を主体とする無機相12とに分離する。相分離処理材3に加圧状態で窒素雰囲気中で熱処理を施して、Fe相11中のFeを窒化してα”Fe16N2相を生成することで磁性体4が得られる。磁性相の主成分が磁気特性に優れるα”Fe16N2相であるため、磁性体4は、磁気特性に優れる上に、Coの含有量が10原子%未満であるため、Coの使用量を低減できる。 (もっと読む)


【課題】より経済的な希土類永久磁石を提供する。
【解決手段】複数の主磁石層(10、10’)と、複数の下位磁石層(11、12、13、11’、12’、13’、14)とを有する、電気機械(2)の磁石装置用の積層磁石(1、1’)が提供され、各磁石層(10、10’、11、12、13、11’、12’、13’、14)はランタニドの層濃度を有する強磁性体を含み、該ランタニドの層濃度が主磁石層(10、10’)において最大である。 (もっと読む)


【課題】高い磁気特性を有する希土類磁石の素材となる磁性部材を効率的に得られる磁性部材の製造方法、及びこの製造方法によって得られた磁性部材を提供する。
【解決手段】以下の準備工程と、水素化工程と、成形工程と、脱水素工程とを備え、水素化工程における熱処理は、揺動式炉を用いる。準備工程は、添加元素に希土類元素(以下、Rで示す)と、Feと、B、C及びNから選択される1種(以下、Mで示す)とを含有するR-Fe-M系合金からなる原材料を準備する工程である。水素化工程は、原材料を、水素を含む雰囲気中で、R-Fe-M系合金の不均化温度以上の温度で熱処理して磁石用粉末を製造する工程である。成形工程は、磁石用粉末を圧縮成形して粉末成形体を形成する工程である。脱水素工程は、粉末成形体を、減圧雰囲気中又は不活性雰囲気中で、当該粉末成形体の再結合温度以上の温度で熱処理して磁性部材を形成する工程である。 (もっと読む)


【課題】熱間塑性加工により高い磁化を達成すると同時に、高い保磁力をも確保した希土類磁石の製造方法を提供する。
【解決手段】R−T−B系希土類合金(R:希土類元素、T:FeまたはFeの一部をCoで置換)の粉末を成形した後に、熱間塑性加工を行なってR−T−B系希土類磁石を製造する方法において、上記成形とは異なる加工方向で上記熱間塑性加工を行なう。 (もっと読む)


【課題】磁石保磁力を高めながら材料コスト低減を図ることができ、粒界拡散過程における熱エネルギを少なくして製造コスト低減も図ることのできるネオジム磁石の製造方法と、この方法によって製造されたネオジム磁石を提供する。
【解決手段】主相Sと粒界相Rからなる金属組織を有するネオジム磁石Mと、ネオジムと非希土類金属からなるネオジム合金G’を減圧雰囲気下で熱処理し、該粒界相R内にネオジム合金Gを気相拡散させるネオジム磁石の製造方法である。 (もっと読む)


【課題】Dy等を内部まで短時間で効率的に拡散させることができる希土類磁石の製造方法を提供する。
【解決手段】本発明の希土類磁石の製造方法は、希土類磁石合金からなる粉末粒子の成形体または焼結体である磁石材と保磁力を向上させる拡散元素を含む拡散材とを近接して配置させる配置工程と、加熱した拡散材から蒸発した拡散元素の蒸気に加熱した磁石材を曝して磁石材内へ拡散元素を拡散させる拡散工程とを備える希土類磁石の製造方法であって、拡散工程は、磁石材と独立して拡散材を、磁石材の加熱温度である磁石材温度(Tm)とは異なる拡散材温度(Td)に加熱する工程であることを特徴とする。本発明によれば、磁石材温度(Tm)と拡散材温度(Td)を別個に設定して拡散処理を行うことにより、ごく短時間の加熱であっても、拡散元素を効率的に磁石内部まで拡散させ得る。 (もっと読む)


【課題】R−T−B系焼結磁石体へのRH拡散の条件が変わっても拡散量が変動することなく安定してR−T−B系焼結磁石を製造する。
【解決手段】焼結磁石の製造方法は、R−T−B系焼結磁石体を準備する工程と、ジルコニア、アルミナ、イットリア、窒化ケイ素、炭化ケイ素、窒化硼素若しくはこれらの混合物のセラミックスまたはMo、Nb、W、Taのいずれかの1種の金属若しくはこれらの合金のいずれかからなる基材に重希土類元素RH(DyおよびTbの少なくとも一方)を含む金属または合金を被覆したRH拡散源を準備する工程と、前記R−T−B系焼結磁石体および前記RH拡散源を処理室内に装入・配置する工程と、前記R−T−B系焼結磁石体および前記RH拡散源を700℃から1000℃に加熱するRH拡散工程とを包含する。 (もっと読む)


【課題】還元拡散法を利用し希土類−鉄合金粉末を均一に窒化することで、磁気特性を向上させる希土類−鉄−窒素系磁石粉末の製造方法、及び得られる希土類−鉄−窒素系磁石粉末を提供。
【解決手段】希土類酸化物粉末、鉄粉末、及び該希土類酸化物を還元するための還元剤を混合し、この混合物を還元拡散法により非酸化性雰囲気中で加熱焼成して希土類−鉄母合金を含む還元拡散反応生成物を得る工程、得られた希土類−鉄母合金を窒化処理する工程とを含む下記の一般式(1)で表される希土類−鉄−窒素系磁石粉末を得る製造方法において、前記希土類酸化物を鉄粉末、及び還元剤と混合する前に、前記希土類酸化物のイグロス成分を0.1質量%以下に低減する条件で加熱乾燥処理することを特徴とする希土類−鉄−窒素系磁石粉末を得る製造方法などにより提供。
Fe(100−a−b) ・・・(1)
(式(1)中、Rは1種類または2種以上の希土類元素であり、またa、bは原子%で、4≦a≦18、10≦b≦17を満たす。) (もっと読む)


【課題】高密度で高磁気特性を有し、熱安定性、耐酸化性に優れた希土類−鉄−窒素−水素−酸素系磁石用固形材料を製造する方法を提供する。
【解決手段】希土類−鉄−窒素−水素−酸素系磁性材料を50〜100体積%含有した磁石用固形材料の製造方法であって、希土類−鉄−窒素−水素−酸素系磁性材料の原料粉体を、3〜40GPaの水中衝撃波を用いて、衝撃圧縮固化し、衝撃圧縮の持つ超高圧剪断性、活性化作用、短時間現象等の特徴を活かして、R−Fe−N−H−O系磁性材料を主として含有する磁石用固形材料を得る。 (もっと読む)


【課題】Dy等を用いるまでもなく、高保磁力を発現する磁性体を提供する。
【解決手段】本発明の磁性体は、RFe14B結晶粒(R:希土類元素)からなる主相と該結晶粒間に形成された粒界相とからなり、結晶粒は最長幅が500nm以下の角丸形状をしており、粒界相は最小幅が1nm以上であるナノサイズの結晶集合体からなることを特徴とする。この磁性体は、例えば、R−Fe−B非晶質体に拡散材(例えば、R−Cu)を付着させた付着非晶質体を加熱して、RFe14B結晶粒からなる主相とこの結晶粒間に形成される粒界相を並行して形成することにより得られる。本発明によれば、稀少元素であるDy等を粒界に拡散させるまでもなく、非常に高い保磁力の磁性体が得られる。 (もっと読む)


【課題】水素粉砕粉の酸素含有量を調整することができ、また、酸素含有量が調整された低酸素水素粉砕粉と通常酸素水素粉砕粉の水素粉砕後の水素粉砕粉の回収、水素粉砕粉への潤滑剤の添加、水素粉砕粉と潤滑剤の混合を共通の容器で行うことができる希土類系磁石用原料合金の水素粉砕粉の製造方法及び製造装置の提供。
【解決手段】 回収室内を減圧した後に、処理容器内の水素粉砕粉を回収室内に排出し、水素粉砕粉を回収室内に排出した後に、回収室内に不活性ガス及び/又は酸素含有ガスを導入し、回収室内を所定圧力及び所定酸素濃度とした後に、水素粉砕粉を回収容器に回収する。回収容器内で水素粉砕粉に潤滑剤を添加した後、回収容器を冷却しながら水素粉砕粉と潤滑剤を混合する。 (もっと読む)


【課題】磁石の中心部まで重希土類元素RHを導入するR−T−B系焼結磁石の製造方法を提供する。
【解決手段】R−T−B系焼結磁石の製造方法において、磁石素材と重希土類元素RH(DyおよびTbの少なくとも1種)の金属または合金からなるRH拡散源とを相対的に移動可能かつ近接または接触可能に処理室内に投入する工程、磁石素材とRH拡散源とを処理室内で連続的または断続的に移動させながら800℃以上1000℃以下の熱処理を10分以上行うRH拡散工程をした後、作製した磁石中間体に表面加工を行ってから再度RH拡散工程を行う。 (もっと読む)


【課題】 本発明は、工業的に高純度、且つ優れた磁気特性を示す強磁性粒子粉末及びその製造法に関する。また、該強磁性粒子粉末を用いた異方性磁石、ボンド磁石、圧粉磁石を提供する。
【解決手段】 メスバウアースペクトルよりFe16化合物相が80%以上の割合で構成される強磁性粒子粉末であり、該強磁性粒子は粒子外殻にFeOが存在するとともにFeOの膜厚が5nm以下である強磁性粒子粉末は、平均長軸径が40〜5000nm、アスペクト比(長軸径/短軸径)が1〜200の酸化鉄又はオキシ水酸化鉄を出発原料として用い、凝集粒子の分散処理を行い、次いで、メッシュを通した鉄化合物粒子粉末を160〜420℃にて水素還元し、130〜170℃にて窒化処理して得ることができる。 (もっと読む)


81 - 100 / 997