説明

Fターム[5E040CA01]の内容

硬質磁性材料 (8,571) | 磁気特性・用途 (1,594) | 硬質(磁石用) (997)

Fターム[5E040CA01]に分類される特許

61 - 80 / 997


【課題】焼結前の原料粉末の組織が非晶質であるかナノ結晶質であるかによらず、高い残留磁化と高い保磁力とを同時に達成できる希土類磁石の製造方法を提供する。
【解決手段】異方性でナノ結晶質の希土類磁石の製造方法であって、
ナノ結晶質および/または非晶質の希土類磁石合金の粉末を準備する工程、
上記粉末を焼結する工程、
得られた焼結体を熱処理する第1熱処理工程、
次いで熱間強加工を行なう工程
を含むことを特徴とする希土類磁石の製造方法。 (もっと読む)


【課題】R−T−B系焼結磁石と支持体との溶着の発生を減少させるとともに、RH供給源からR−T−B系焼結磁石体へ重希土類元素RHの供給を効率よくすることができる、R−T−B系焼結磁石の製造方法を提供すること。
【解決手段】RH供給源とR−T−B系焼結磁石体との間に特定形状のスペーサを介在させて上下方向に多段配置する。これにより、従来用いられている網などの支持体と比べて、R−T−B系焼結磁石との溶着の発生を大幅に減少させることができる。また、RH供給源やR−T−B系焼結磁石体との接触面積が小さいため、RH供給源からR−T−B系焼結磁石体へ重希土類元素RHの供給を効率よくすることができ、重希土類元素RHの歩留まりを向上させることができる。 (もっと読む)


【課題】R−T−B系焼結磁石内部に重希土類元素RHが効率よく拡散され、所定の磁気特性を得る磁石の製造方法を提供する。
【解決手段】R−T−B系焼結磁石の製造方法は、R−T−B系焼結磁石素材を準備する工程と、重希土類元素RH(RHはDyおよびTbの少なくとも一種を含む)と40質量%以上95質量%以下のFeとからなるRH−Fe合金と、軽希土類元素RL(Nd、Pr、Ce、Laの少なくとも一種を含む)を含むRL金属と、からなり、総希土類量が65質量%以上、軽希土類元素RLが20質量%以上70質量%以下、重希土類元素RHが50質量%以下、である粉末状の拡散材を準備する工程と、前記R−T−B系焼結磁石素材に対し、前記拡散材を前記R−T−B系焼結磁石素材の表面に存在させた状態で、800℃以上1000℃以下の温度で真空または不活性ガス中においてRH拡散処理する工程と、を包含する。 (もっと読む)


【課題】高い磁石性能、すなわち高い最大エネルギー積を実現できる薄膜磁石を提案する。
【解決手段】高い最大エネルギー積の薄膜磁石を実現するため、高い磁気異方性エネルギーと高い飽和磁化を実現できる薄膜磁石の構成を提供する。このため、Fe又はFeCo膜の一方の面に、Ta、Nb、V、Cr、Ru、Cu、Agの群から選ばれた一つ以上の金属を直に形成する。また、Fe又はFeCo膜の他方の面には、希土類元素を含む強磁性体を直に形成する。 (もっと読む)


【課題】 本発明は、工業的に高純度、且つ優れた磁気特性を示す強磁性粒子粉末及びその製造方法に関する。また、該強磁性粒子粉末を用いた異方性磁石、ボンド磁石、圧粉磁石を提供する。
【解決手段】 メスバウアースペクトルよりFe16化合物相が80%以上の割合で構成される強磁性粒子粉末であり、該強磁性粒子は粒子外殻にFeOが存在するとともにFeOの膜厚が5nm以下である強磁性粒子粉末は、出発原料の一次粒子の(粒子長軸長の偏差平均)/(平均粒子長軸長)が50%以下、Uが1.55以下、Cが0.95以上、C2が0.40以上であり、平均粒子長軸長が40〜5000nm、アスペクト比(長軸径/短軸径)が1〜200である鉄化合物を用い、凝集粒子の分散処理を行い、次いで、メッシュを通した鉄化合物粒子粉末を160〜420℃にて還元処理し、130〜170℃にて窒化処理して得ることができる。 (もっと読む)


【課題】回転機のコギングトルクの低減を図ることができる回転機用磁石、回転機及び回転機用磁石の製造方法を提供する。
【解決手段】本発明に係る回転機用磁石は、R214B(RはNd、Prの何れか一方又は両方を主成分として含む1種以上の希土類元素であり、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表す)相の組成を含む希土類焼結磁石体を有する希土類焼結磁石であり、前記希土類焼結磁石体は、回転機の周方向に配置された複数のコイルを有するステータの対向面と前記対向面に対向する対向面とが略平行であると共に、前記希土類焼結磁石体の端面の両端部分及びその側面部分を含む両端部の残留磁束密度は、ステータと対向する端面の中央部分及びその側面部分を含む中央部における残留磁束密度より低く、希土類焼結磁石体の両端部の残留磁束密度と中央部の残留磁束密度との比が0.4%以上であることを特徴とする。 (もっと読む)


【課題】HDDR法を用いて良好な角型性と高い保磁力を有するR−T−B系永久磁石を提供する。
【解決手段】 50%体積中心粒径が1μm以上10μm未満であり、R214B相を含むR−T−B系合金(RはNdおよび/またはPrを50原子%以上含む希土類元素、TはFe、またはFeとCo)の粉末を用意する。この粉末を成型して圧粉体を作製する。圧粉体を250℃以上600℃以下の温度の水素雰囲気中で熱処理を施す第一熱処理工程と、圧粉体に対し、650℃以上1000℃以下の水素雰囲気中で熱処理を施す第二熱処理工程と、圧粉体に対し、650℃以上1000℃以下の真空または不活性雰囲気中で熱処理を施す第三熱処理工程とを実行する。第一熱処理工程終了時から第二熱処理工程の開始時までの昇温は、真空または不活性雰囲気中で行う。 (もっと読む)


【課題】HDDR法を用いて良好な角型性と高い保磁力を有するR−T−B系永久磁石を提供する。
【解決手段】50%体積中心粒径が1μm以上10μm未満であり、R214B相を含むR−T−B系合金粉末(RはNdおよび/またはPrを50原子%以上含む希土類元素、TはFe、またはFeとCo)と、粒径75μm未満のR’(R’はNd、Pr、Dy、Tbから選ばれる1種以上)、またはR’−M系合金(MはAl、Ga、Cu、Co、Ni、Cr、Fe、Si、Geから選ばれる1種以上)の粉末との混合粉末の圧粉体を200℃以上600℃以下の水素雰囲気中で熱処理を施す第一熱処理工程と、圧粉体に対し水素雰囲気中で650℃以上1000℃以下の温度で熱処理を施す第二熱処理工程と、真空または不活性雰囲気中で圧粉体に対し650℃以上1000℃以下の温度で熱処理を施す第三熱処理工程とを実行する。 (もっと読む)


【課題】フェライト焼結磁石の発塵性及び変色を低減し、フェライト焼結磁石を機器に組み込む際の汚れを低減することを課題とする。
【解決手段】フェライト焼結磁石1は、例えば、磁性粉末とバインダ樹脂とを混合して得られた磁性粉末混合物を、磁場を印加した金型の内部に射出成形して成形体を作製し、この成形体を焼成することによって製造される。焼結磁石1の表面粗さRzは、3.5μm以下である。表面粗さRzは、十点平均粗さである。 (もっと読む)


【課題】焼結磁石体の表層領域においても重希土類元素RHが主相粒内部に拡散することを抑制し、Brを実質的に低下させずにHcJを向上させたR−T−B系焼結磁石を製造する方法及びそれに用いる製造装置を提供する。
【解決手段】本発明のR−T−B系焼結磁石の製造装置は、少なくとも1つの開口部8を有し、複数個のR−T−B系焼結磁石9が挿入される処理容器3と、処理容器3の外部に配置されたRH供給源5および処理容器3を加熱する加熱装置7、17と、RH供給源5が複数個のR−T−B系焼結磁石9の一部に対向し、かつ離間した状態で、RH供給源5と複数個のR−T−B系焼結磁石9との配置関係を変化させるように複数個のR−T−B系焼結磁石9を移動させる駆動装置4とを備える。 (もっと読む)


【課題】水が付着するような環境でも錆の発生を十分に抑制できる希土類磁石を簡便に製造することができる希土類磁石の製造方法を提供すること。
【解決手段】好適な実施形態の希土類磁石の製造方法は、軽希土類元素、Fe及びBを含む磁石素体と、この磁石素体の表面上に形成された、M(Mは、Si、Al、Zn、Mn、Ge、Sn、Bi、Pb、Ga、Cu、Ni及びCoからなる群より選ばれる少なくとも1種の元素を示す。)の酸化物又は水酸化物を含む皮膜とを備える複合体に、熱処理を行って、磁石素体の表面上に、軽希土類元素、Fe、並びに、Mを含む合金を含有する保護層を形成させる熱処理工程を有する。 (もっと読む)


【課題】希土類焼結磁石の磁気特性を向上させることができる希土類焼結磁石の製造方法を提供する。
【解決手段】発明に係る希土類焼結磁石の製造方法は、R214B(Rは1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表し、BはB又はB及びCを表す)化合物を含む主相と、前記R214B化合物よりRを多く含む粒界相とを含む希土類焼結磁石を製造するにあたり、R214B相の組成を含む希土類焼結磁石体の表面に、重希土類化合物を含む希土類化合物含有液を付着させる重希土類化合物の付着工程と、前記重希土類化合物が付着した希土類焼結磁石体を熱処理する熱処理工程と、を有し、熱処理した希土類焼結磁石体の角形比Hk/HcJは、熱処理して角形比Hk/HcJが一番高くなる焼結条件において得られる希土類焼結磁石体の角形比Hk/HcJの0.8以上1.0未満であることを特徴とする。 (もっと読む)


【課題】希土類元素の組成比率がR2Fe14Bの化学量論組成より少ない磁石粉末を用いて比較的低い熱間成形圧力で残留磁束密度Brの高い等方性磁石を製造する。
【解決手段】本発明のバルク磁石の製造方法では、まず、希土類元素R(RはLaおよびCeを実質的に含まない少なくとも1種の希土類元素)の含有量が2原子%以上12原子%以下の組成であるR−Fe−B系急冷合金磁石粉末の粒子と、希土類元素R’(R’は、Nd、Pr、DyおよびTbからなる群から選択された少なくとも1種の元素)を含有する希土類含有粉末の粒子とが混合した混合粉末であって、前記希土類含有粉末の割合が全体の1質量%以上30質量%以下の範囲にある混合粉末を用意する。この混合粉末を加圧しながら500℃以上850℃以下の温度に加熱して成形し、バルク磁石を形成する。 (もっと読む)


【課題】金属等の酸化しやすい物質と接触させた場合に、前記酸化しやすい物質の酸化を抑制できる酸化鉄ナノ粒子分散液を提供すること。
【解決手段】酸化鉄粒子分散液は、1次粒子径が100nm以下で、2次粒子径が500nm以下である酸化鉄粒子と、エステル基と、スルホキシド基との少なくとも一方を有する極性溶媒を用いて前記酸化鉄粒子を分散させる分散液と、を含む。酸化鉄粒子は、ε−Feと、γ−Feと、α−Feと、Feとから選択されることが好ましい。 (もっと読む)


【課題】R−T−B系焼結磁石と支持体との溶着の発生を減少させる蒸着拡散処理用ケース及びその蒸着拡散処置用ケースを用いたR−T−B系焼結磁石の製造方法を提供すること。
【解決手段】棒状部材を用いた支持体を介して、RH供給源とR−T−B系焼結磁石を上下方向へ交互に多段配置する。これにより、従来用いられている格子状の網などの支持体とくらべて、R−T−B系焼結磁石と支持体との溶着の発生を大幅に低減した蒸着拡散処理用ケース及びそのケースを用いたR−T−B系焼結磁石の製造方法を提供することができる。 (もっと読む)


【課題】Co含有量を低減させることにより原料コストを低下させるとともに、高いBと高いH/HcJを保持したままHcJを向上させたフェライト焼結磁石の提供。
【解決手段】六方晶のM型マグネトプランバイト構造を有するフェライト相を主相とし、前記主相よりもLaの原子比率が高いオルソフェライト相を0.2質量%以上2.5質量%以下含有し、金属元素の原子比率を示す一般式:Ca1−x−yLaFe2n−zCo(A元素はBa及び/又はSr)において、x、y及びz並びにモル比を表わすnが、0.2≦x≦0.6、0≦y≦0.2、0.03≦z<0.25、3≦n≦7、及び1−x−y>yを満足し、かつSiをSiO換算で0.2質量%以上1.8質量%以下含有させる。 (もっと読む)


【課題】高鉄濃度組成を有するSm−Co系磁石で大きな保磁力を発現させることを可能にした永久磁石を提供する。
【解決手段】実施形態の永久磁石は、組成式:RpFeqZrrsCutCo100-p-q-r-s-t(R:希土類元素、M:TiおよびHfから選ばれる少なくとも1種、10≦p≦15、24≦q≦40.5、1.5≦r≦4.5、0≦s≦2.3、1.5≦r+s≦4.5、0.8≦t≦13.5(原子%))で表される組成を有する。永久磁石は、Th2Zn17型結晶相からなる主相と、主相の結晶粒界に存在し、Zr濃度が4原子%以上35原子%以下の結晶相を有する粒界相とを備える。 (もっと読む)


【課題】希土類焼結磁石のHcJを向上させつつBrの低下を抑制すること。
【解決手段】この希土類焼結磁石の製造方法は、希土類元素を含む粉末を調整する工程と(ステップS1〜ステップS3)、得られた粉末を混合する工程と(ステップS4)、混合粉末を磁場中において成形することにより、成形体を得る工程と(ステップS5)、この成形体を焼結して焼結体を得る工程と(ステップS6)、この焼結体に、重希土類元素の単体と、重希土類元素の化合物との少なくとも一方を付着させる工程と(ステップS7)、重希土類元素の単体と、重希土類元素の化合物との少なくとも一方が付着した焼結体を誘導加熱する工程と(ステップS8)、を含む。 (もっと読む)


【課題】優れた耐食性と接着性とを兼ね備えた磁石部材を提供する。
【解決手段】本発明に係る磁石部材30は、希土類磁石を含む磁石素体32と、Niを含み、磁石素体32を被覆するめっき膜34と、を備える磁石部材であって、磁石素体32の容易磁化方向Mを垂線にもつ磁石部材の面Sの周縁部38に位置するめっき膜34中の硫黄の含有率が、面Sの中央部36に位置するめっき膜34中の硫黄の含有率よりも低い。 (もっと読む)


【課題】保磁力が向上し製造工程が短縮された磁性材料用粉末の製造方法及び保磁力が向上した永久磁石を提供する。
【解決手段】磁性材料用粉末の製造方法は、磁性材料用粉末の原料及び前記原料に拡散させる拡散材料を反応炉内へ投入する原料投入工程と、前記反応炉内へ水素を供給すると共に前記反応炉内を加熱しつつ、前記原料及び前記拡散材料を撹拌する撹拌工程と、前記撹拌工程で撹拌された前記原料を前記反応炉内で水素化分解させて分解生成物を得る水素化分解工程と、前記反応炉内で前記分解生成物から水素を放出させ、前記分解生成物の水素濃度を低減し磁性材料粉末を得る脱水素再結合工程と、を含む。 (もっと読む)


61 - 80 / 997