説明

Fターム[5E040HB17]の内容

硬質磁性材料 (8,571) | 製造・処理方法・装置 (1,455) | 粉末製造 (314)

Fターム[5E040HB17]に分類される特許

21 - 40 / 314


【課題】保磁力が向上し製造工程が短縮された磁性材料用粉末の製造方法及び保磁力が向上した永久磁石を提供する。
【解決手段】磁性材料用粉末の製造方法は、磁性材料用粉末の原料及び前記原料に拡散させる拡散材料を反応炉内へ投入する原料投入工程と、前記反応炉内へ水素を供給すると共に前記反応炉内を加熱しつつ、前記原料及び前記拡散材料を撹拌する撹拌工程と、前記撹拌工程で撹拌された前記原料を前記反応炉内で水素化分解させて分解生成物を得る水素化分解工程と、前記反応炉内で前記分解生成物から水素を放出させ、前記分解生成物の水素濃度を低減し磁性材料粉末を得る脱水素再結合工程と、を含む。 (もっと読む)


【課題】拡散材として使用する希土類化合物の量を低減しても十分に高い保磁力を有する異方性磁粉を製造する。
【解決手段】異方性磁粉の製造方法は、水素化分解・脱水素再結合法によってHDDR粉を得る工程と、希土類化合物を含む拡散材とHDDR粉を混合して混合粉末を調製する工程と、混合粉末を加熱して拡散材に含まれる元素をHDDR粉に拡散させる工程とを備え、拡散材は、Dy、Tb、Nd、Pr又はLaの水素化物、フッ化物及び鉄化合物からなる群から選ばれる少なくとも一種の化合物の粉末を含有し且つアルミニウム粉末を更に含有する。 (もっと読む)


【課題】HDDR磁粉を用い、重希土類元素の使用を抑えつつ、高い保磁力をもったR−T−B系永久磁石の製造方法を提供する。
【解決手段】HDDR法によるR−T−B系粉末(Rは、Nd及び/又はPrをR全体に対して95原子%以上含む希土類元素、TはFe又はFeの一部をCo及び/又はNiで置換した、Feを50原子%以上含む遷移金属元素)と、R’(Nd及び/又はPrをR’全体に対して90原子%以上含み、DyおよびTbを含まない希土類元素)と25原子%以上65原子%以下のAlからなるR’−Al系合金粉末とを準備する。R−T−B系粉末に対するR’−Al系粉末の質量比を1/10以下とした混合粉末を、R214B相のキュリー点以下の温度で成形した圧粉体を550℃以上R’−Al系合金粉末の液相滲み出し開始温度Tp以下で熱間圧縮成形し、不活性雰囲気または真空中において550℃以上900℃以下の温度で熱処理する。 (もっと読む)


【課題】高い磁気特性を有する希土類磁石の素材となる磁性部材を効率的に得られる磁性部材の製造方法、及びこの製造方法によって得られた磁性部材を提供する。
【解決手段】以下の準備工程と、水素化工程と、成形工程と、脱水素工程とを備え、水素化工程における熱処理は、揺動式炉を用いる。準備工程は、添加元素に希土類元素(以下、Rで示す)と、Feと、B、C及びNから選択される1種(以下、Mで示す)とを含有するR-Fe-M系合金からなる原材料を準備する工程である。水素化工程は、原材料を、水素を含む雰囲気中で、R-Fe-M系合金の不均化温度以上の温度で熱処理して磁石用粉末を製造する工程である。成形工程は、磁石用粉末を圧縮成形して粉末成形体を形成する工程である。脱水素工程は、粉末成形体を、減圧雰囲気中又は不活性雰囲気中で、当該粉末成形体の再結合温度以上の温度で熱処理して磁性部材を形成する工程である。 (もっと読む)


【課題】還元拡散法を利用し希土類−鉄合金粉末を均一に窒化することで、磁気特性を向上させる希土類−鉄−窒素系磁石粉末の製造方法、及び得られる希土類−鉄−窒素系磁石粉末を提供。
【解決手段】希土類酸化物粉末、鉄粉末、及び該希土類酸化物を還元するための還元剤を混合し、この混合物を還元拡散法により非酸化性雰囲気中で加熱焼成して希土類−鉄母合金を含む還元拡散反応生成物を得る工程、得られた希土類−鉄母合金を窒化処理する工程とを含む下記の一般式(1)で表される希土類−鉄−窒素系磁石粉末を得る製造方法において、前記希土類酸化物を鉄粉末、及び還元剤と混合する前に、前記希土類酸化物のイグロス成分を0.1質量%以下に低減する条件で加熱乾燥処理することを特徴とする希土類−鉄−窒素系磁石粉末を得る製造方法などにより提供。
Fe(100−a−b) ・・・(1)
(式(1)中、Rは1種類または2種以上の希土類元素であり、またa、bは原子%で、4≦a≦18、10≦b≦17を満たす。) (もっと読む)


【課題】塗布型磁気記録媒体に適用可能な磁性粒子であって、高い熱的安定性と優れた記録性を兼ね備えた磁性粒子を提供すること。
【解決手段】炭化水素ガスを含有する還元性雰囲気中で六方晶フェライト磁性体に加熱処理を施すことにより得られた磁性粒子。炭化水素ガスを含有する還元性雰囲気中で六方晶フェライト磁性体に加熱処理を施すことを特徴とする磁性粒子の製造方法。非磁性支持体上に強磁性粉末と結合剤とを含有する磁性層を有する磁気記録媒体。前記強磁性粉末が上記磁性粒子である。 (もっと読む)


【課題】水素粉砕粉の酸素含有量を調整することができ、また、酸素含有量が調整された低酸素水素粉砕粉と通常酸素水素粉砕粉の水素粉砕後の水素粉砕粉の回収、水素粉砕粉への潤滑剤の添加、水素粉砕粉と潤滑剤の混合を共通の容器で行うことができる希土類系磁石用原料合金の水素粉砕粉の製造方法及び製造装置の提供。
【解決手段】 回収室内を減圧した後に、処理容器内の水素粉砕粉を回収室内に排出し、水素粉砕粉を回収室内に排出した後に、回収室内に不活性ガス及び/又は酸素含有ガスを導入し、回収室内を所定圧力及び所定酸素濃度とした後に、水素粉砕粉を回収容器に回収する。回収容器内で水素粉砕粉に潤滑剤を添加した後、回収容器を冷却しながら水素粉砕粉と潤滑剤を混合する。 (もっと読む)


【課題】 本発明は、工業的に高純度、且つ優れた磁気特性を示す強磁性粒子粉末及びその製造法に関する。また、該強磁性粒子粉末を用いた異方性磁石、ボンド磁石、圧粉磁石を提供する。
【解決手段】 メスバウアースペクトルよりFe16化合物相が80%以上の割合で構成される強磁性粒子粉末であり、該強磁性粒子は粒子外殻にFeOが存在するとともにFeOの膜厚が5nm以下である強磁性粒子粉末は、平均長軸径が40〜5000nm、アスペクト比(長軸径/短軸径)が1〜200の酸化鉄又はオキシ水酸化鉄を出発原料として用い、凝集粒子の分散処理を行い、次いで、メッシュを通した鉄化合物粒子粉末を160〜420℃にて水素還元し、130〜170℃にて窒化処理して得ることができる。 (もっと読む)


【課題】DYまたはTBを用いてND−FE−B焼結永久磁石を作製する方法および永久磁石を提供すること。
【解決手段】永久磁石を作製する方法が記載されている。一実施形態では、本方法は、所望の組成を有する第1の合金粉末を準備するステップであり、合金粉末はネオジム、鉄およびホウ素を含有する、準備するステップと、第1の合金粉末が、ジスプロシウム、テルビウムまたは両方の容積濃度を超過しているジスプロシウム、テルビウムまたは両方の表面濃度を有するように、ジスプロシウム、ジスプロシウム合金、テルビウムまたはテルビウム合金で第1の合金粉末を被覆するステップと、粉末冶金法を用いて、被覆された合金粉末から永久磁石を形成するステップであり、永久磁石はジスプロシウム、テルビウムまたは両方の非均一分布をその中に有する、形成するステップとを含む。また、永久磁石が記載されている。 (もっと読む)


【課題】合金粉末全体に窒素を均一に供給することにより、均一に窒化され磁気特性が向上した希土類−遷移金属−窒素磁石粉末の製造方法、工業的量産性に適した製造装置及び得られる希土類−遷移金属−窒素磁石粉末、それを用いたボンド磁石用組成物、並びにボンド磁石を提供する。
【解決手段】下記の一般式(1)で表されるピニングタイプの希土類−遷移金属−窒素系磁石粉末を得る製造方法において、該粉末を窒化する際、窒化炉1に設けられた2箇所以上の供給口10から窒化用ガスを流通することを特徴とする磁石粉末の製造方法などにより上記課題を解決する。RαFe(100−α−β−γ)βγ・・・式(1)(式(1)中、Rは希土類元素の一種または二種以上、MはCu、Mn、Co、Cr、Ti、NiおよびZrからなる群から選択される一種または二種以上、α、β、γは原子%であり、4≦α≦18、0.3≦β≦23、15≦γ≦25を満たす。) (もっと読む)


【課題】高温環境でも高い保磁力を有する希土類磁石が得られる磁性部材、この磁性部材の原料に適した粉末成形体、成形性に優れる磁性部材用粉末を提供する。
【解決手段】磁性部材用粉末を構成する各磁性粒子1は、40体積%未満の希土類元素の水素化合物(NdH2)3と、残部がFeとFe-B合金とを含む鉄含有物2からなる。鉄含有物2の相中に水素化合物3が離散して存在する。磁性粒子1の表面に希土類元素を含む希土類供給源材(例えば、水素化合物:DyH2)からなる供給源粒子4aを含む耐熱前駆層4を具える。磁性粒子1中に鉄含有物2の相が均一的に存在することで、上記粉末は成形性に優れる。耐熱前駆層4を具える粉末で形成した粉末成形体を熱処理して、合金粒子5の表面に耐熱保磁力層6が形成された磁性部材が得られる。この磁性部材は、高温環境でも高い保磁力を有する希土類磁石が得られる。 (もっと読む)


【課題】硬磁性を有するとともに、安価且つ軽量であり室温及び高温で高い機械的強度を有するマグネシウム基硬磁性複合材料及びその製造方法を提供する。
【解決手段】マグネシウム粉末及びバリウムフェライト粉末を混合装置に投入し、メカニカルアロイングを施す。これにより、マグネシウム粉末に機械的エネルギーが付与されるため、マグネシウム粉末にひずみが導入されて加工硬化がなされ、機械的強度及び硬さが高められる。このような処理により、機械的強度及び硬さが高められたマグネシウム粉末と、バリウムフェライト粉末との混合粉末が得られるので、この混合粉末を型に充填し、外部磁場を印加しながら放電プラズマ焼結法により焼結して、バリウムフェライト粉末の各粒子の磁気モーメントの向きが一方向に揃った焼結体を成形する。 (もっと読む)


【課題】R−T−B系磁性粉末を製造する装置のスケールアップに伴って反応炉内における水素化分解反応の発熱量及び脱水素再結合反応の吸熱量が増大しても、優れた磁気特性を有する磁性粉末を十分に効率的且つ安定的に製造できる方法を提供する。
【解決手段】水素化分解・脱水素再結合法によってR−T−B系磁性粉末を製造するためのものであり、被処理物と耐水素脆性を有するメディアとを混合する混合工程と、反応炉内において、メディアの存在下、被処理物に対する水素化分解・脱水素再結合法による処理を行う処理工程とを備える。 (もっと読む)


【課題】R−T−B系磁性粉末を製造する装置のスケールアップに伴って反応炉内における水素化分解反応の発熱量が増大しても、優れた磁気特性を有する磁性粉末を十分に効率的且つ安定的に製造できる方法を提供すること。
【解決手段】本発明に係るR−T−B系磁性粉末の製造方法は、被処理物を収容した反応炉の炉内を昇温し、被処理物を水素化分解させて分解生成物を得る水素化分解工程と、分解生成物から水素を放出させてR−T−B系磁性粉末を得る脱水素再結合工程とを備え、水素化分解工程において、被処理物の水素化分解反応開始時における反応炉の昇温速度を5℃/分以下とすることを特徴とする。 (もっと読む)


【課題】磁気特性が向上した希土類−遷移金属−窒素磁石粉末の製造方法、製造装置及び得られる希土類−遷移金属−窒素磁石粉末、それを用いたボンド磁石用組成物、並びにボンド磁石を提供。
【解決手段】還元拡散法により、遷移金属合金粉末、希土類酸化物粉末、及び該希土類酸化物を還元するための還元剤を混合し、該混合物を非酸化性雰囲気中で加熱焼成して希土類−遷移金属系母合金からなる還元拡散反応生成物とする工程と、この還元拡散反応生成物を窒化炉に装入し、窒化用ガスを流通しながら加熱し、窒化処理して希土類−遷移金属−窒素系磁石粉末を得る製造方法において、前記希土類−遷移金属合金粉末を窒化する際、窒化用ガスが、窒化炉1に設けられた2箇所以上の供給口10から流通され窒化を均一に行う。 (もっと読む)


【課題】微粒子でありながらも凝集発生がきわめて低減された分散性の良い金属磁性粉末を提供する。
【解決手段】表面官能基を粉末の単位表面積当たり1.2×1020個/m2以上有する金属磁性粉末。この粉末はFeを主成分とする磁性粉末であって、平均粒子径が20〜150nm、BET比表面積が60m2/g以上であるものが好適な対象となる。この粉末は塗料に混合されて磁性塗料を構成し、さらに磁気記録媒体を構成するものである。この金属磁性粉末は、安定な酸化膜を有する金属磁性粉末に対し、飽和水蒸気の充満した容器内で水蒸気に曝す処理を最終仕上げとして施す金属磁性粉末の製法、あるいは炭酸ガスの充満した容器内で炭酸ガスに曝す処理を最終仕上げとして施す製法によって得られる。 (もっと読む)


【課題】高残留磁束密度、高保磁力の焼結磁石であるR−T−B−M系焼結磁石となるためのR−T−B−M系焼結磁石用合金を作製する。
【解決手段】焼結磁石全体に亘って結晶粒の主相外殻にDyの多いR14Bが存在するR−T−B−M系焼結磁石を作製できるように、R−T−B−M母合金1と重希土類元素RHの金属又は合金のRH拡散源2とを処理室3内にて連続的または断続的に移動させながら、雰囲気圧力10Pa以下600℃以上1000℃以下の熱処理を10分以上48時間以下行い、R−T−B−M系焼結磁石用合金の主相であるR214B化合物の結晶とそれ以外の相との界面部分に重希土類元素RHの濃度が高い領域を連続して生成する。 (もっと読む)


【課題】 本発明は、工業的に生産可能で、大きなBHmaxを有する異種金属元素を含んだFe16粒子粉末の提供を目的とする。
【解決手段】 金属元素X(ここで、X=Mn、Ni、Ti、Ga、Al、Ge、Zn、Pt、Siである。)を含んだ、酸化鉄又はオキシ水酸化鉄、及び/又は、これら酸化鉄又はオキシ水酸化鉄粒子、必要により、前記酸化鉄又はオキシ水酸化鉄の粒子表面を少なくともアルミナやシリカによって被覆した出発原料を還元処理及び窒化処理を行って得られるFe16化合物相がメスバウアー測定より70%以上で構成される強磁性粒子粉末であり、該強磁性粒子粉末を磁気的配向させた異方性磁石又はボンド磁石である。 (もっと読む)


【課題】本発明は、磁気特性に優れた磁石材料を提供することを課題とする。
【解決手段】結晶格子の侵入位置にF元素と、N元素,H元素またはC元素とを配置したR−Fe[式中、Rは4f遷移元素またはYである]の2元系、またはR−Fe−T[式中、Rは前記の通りであり、TはFeを除く3d遷移元素、またはAl,Si,Ga,Mo,NbもしくはWである(但し、TがWである場合、RはW以外の4f遷移元素またはYである)]の3元系の合金からなる磁石材料により上記課題を解決することができる。 (もっと読む)


【課題】高温環境でも高い保磁力を有する希土類磁石が得られる磁性部材、この磁性部材の原料に適した粉末成形体、成形性に優れる磁性部材用粉末を提供する。
【解決手段】磁性部材用粉末を構成する各磁性粒子1は、40体積%未満の希土類元素の水素化合物(NdH2)3と、残部がFeとFe-B合金とを含む鉄含有物2からなる。鉄含有物2の相中に水素化合物3が離散して存在する。磁性粒子1の表面に希土類元素を含む希土類供給源材(例えば、水素化合物:DyH2)からなる供給源粒子4aと、酸素の透過係数が小さい樹脂からなる樹脂層4bとを含む耐熱前駆層4を具える。磁性粒子1中に鉄含有物2の相が均一的に存在することで、上記粉末は成形性に優れる。耐熱前駆層4を具える粉末で形成した粉末成形体を熱処理して、合金粒子5の表面に耐熱保磁力層6が形成された磁性部材が得られる。この磁性部材は、高温環境でも高い保磁力を有する希土類磁石が得られる。 (もっと読む)


21 - 40 / 314