説明

Fターム[5E040HB17]の内容

硬質磁性材料 (8,571) | 製造・処理方法・装置 (1,455) | 粉末製造 (314)

Fターム[5E040HB17]に分類される特許

101 - 120 / 314


【課題】有機分散剤や有機潤滑剤による影響を受けることなく、高い磁気特性を有する希土類焼結磁石の製造方法を提供する。
【解決手段】本方法は原料の合金を粗粉砕した後にジェットミル法によって微粉砕することにより合金粉末を得る粉砕工程と、その合金粉末を磁界中で配向する配向工程と、配向工程後の合金粉末を焼結する焼結工程とを有し、微粉砕を水素ガス中、又は水素ガスと不活性ガスの混合ガス中で行うことを特徴とする。本方法では水素が分散剤となり、有機分散剤を用いずに効率よく微粉砕することができるため、有機分散剤に由来する炭素、酸素、窒素原子が合金粉末の微粉粒子内に侵入することがなく、磁気特性が向上する。また、粉砕工程と配向工程の間に合金粉末と液化不活性ガスを混合し、液化不活性ガスが完全に気化する前に配向工程を行うと、有機潤滑剤を用いずに配向性が高まるため、有機潤滑剤に由来する炭素等の影響がないうえ、脱有機潤滑剤工程が不要になる。 (もっと読む)


【課題】高い磁気特性を有し、特に優れた保磁力を有するR−T−B系希土類焼結磁石を高収率で製造することが可能なR−T−B系希土類焼結磁石の製造方法を提供すること。
【解決手段】R−T−B系原料合金をHDDR処理して処理合金を調製する処理工程と、処理合金を粉砕して、平均粒径2μm以下の合金粉末を調製する粉砕工程と、合金粉末を磁場中成形して焼結し、焼結体を調製する焼結工程と、を有するR−T−B系希土類焼結磁石の製造方法。 (もっと読む)


【課題】金属磁性粉末の粒子を小さくするために金属磁性粉末の表層部の非磁性成分を溶液中に溶出除去する際に、還元剤を使用しなくても簡便に金属磁性粉末の表層部の非磁性成分を溶出除去することができる、金属磁性粉末の製造方法を提供する。
【解決手段】金属磁性粉末の製造方法は、形状保持や焼結防止のために非磁性成分が添加された原料粉末を焼成した後に還元して、鉄または鉄とコバルトを主成分として含有し且つ形状保持や焼結防止のために添加された非磁性成分を含有する金属磁性粉末を製造する金属磁性粉末製造工程と、この金属磁性粉末の表層部の非磁性成分と錯体を形成し得る錯化剤を添加するとともにアルカリを添加してpH10〜14に調整した溶液中に、金属磁性粉末の表層部の非磁性成分を浸出して溶出除去する工程とを備えている。 (もっと読む)


【課題】粒子を小さくしても粒子同士の凝集を防止することができるとともに、有機物との馴染みを良好にして、磁性塗料に配合する際の粒子の分散性を向上させることができる、金属磁性粉末およびその製造方法を提供する。
【解決手段】金属磁性粉末の製造方法は、形状保持や焼結防止のために非磁性成分が添加された原料粉末を焼成した後に還元して、鉄または鉄とコバルトを主成分として含有し且つ形状保持や焼結防止のために添加された非磁性成分を含有する金属磁性粉末を製造する金属磁性粉末製造工程と、この金属磁性粉末の表層部の非磁性成分を溶出除去する溶出処理工程と、表層部の非磁性成分を溶出除去した金属磁性粉末の表面に酸化膜を形成する酸化処理工程と、酸化膜を形成した金属磁性粉末を還元処理した後に酸化処理する再還元・安定化処理工程と、表層部の非磁性成分を溶出除去した金属磁性粉末の表面を洗浄する洗浄工程とを備えている。 (もっと読む)


【課題】より一層磁気特性の高いSmCo合金微粒子の製造方法を提供する。
【解決手段】サマリウム塩とコバルト塩とを溶媒に溶解させた溶液を混合させて反応溶液を作成する混合工程と、作成された前記反応溶液中の水分を除去する脱水工程と、脱水後の前記反応溶液を所定温度まで昇温して化学反応を起こさせSmCo合金化し、化学反応後、室温になるまで放冷させる合金形成工程と、を含み、前記合金形成工程の昇温開始から放冷終了までの全工程を、還元性ガスまたは還元性ガスと不活性ガスとの混合ガスを含むガスフロー雰囲気下で処理するようにした。 (もっと読む)


【課題】腫瘍細胞を選択的に破壊する等、種々の用途に効果的に利用可能な新規な形状の磁性微粒子、その製造方法及びその製造装置を提供する。
【解決手段】コア部1とそのコア部2の周りにある多数のヒゲ状突起3とからなり、そのヒゲ状突起3を含む粒子径Dに対するヒゲ状突起3の長さLの割合が5%以上30%以下である磁性微粒子1により、上記課題を解決する。このとき、ヒゲ状突起3を含む粒子径Dの平均が100nm以上300nm以下の範囲内である磁性微粒子1は、ガスフロースパッタ法で形成された鉄微粒子として好ましく得ることができ、腫瘍細胞内に貪食又はエンドサイトーシスされて外部から加わる変換磁場により該腫瘍細胞を破壊する磁性微粒子として利用できる。 (もっと読む)


【課題】軟磁性相の硬磁性相に対する体積比率を上げても保磁力の低下を起こすことなく、飽和磁化を向上させることができる交換スプリング磁性粉末を提供する。
【解決手段】硬磁性相と軟磁性相との各々の粒子サイズを、超常磁性臨界径より大きく単磁区臨界径以下とし、粒子自体がナノサイズの単結晶粒子構造となるようにすることで、軟磁性相の硬磁性相に対する体積比率を上げても保磁力の低下を起こすことなく、飽和磁化を向上させることができるようにした。 (もっと読む)


【課題】本発明は、粒子径および外殻の膜厚を自在に制御でき、且つ、分散性に優れる磁性中空粒子およびその製造方法を提供することを目的とする。
【解決手段】正に帯電させた粒子径100nm以下の球状のテンプレート粒子の表面に対して、負に帯電させた粒子径6nm以下の磁性粒子を単層で帯電吸着させる。これを水相で圧力加熱することによって、磁性粒子が互いに強固に融着し、外殻を形成する。外殻内部の残存成分を洗浄・溶出することによって磁性中空粒子が作製される。 (もっと読む)


【課題】還元・窒化に要する時間を短縮し、磁気特性に優れた窒化鉄系磁性微粒子を効率良く製造する方法を提供する。
【解決手段】本発明の窒化鉄系磁性微粒子の製造方法では、まず、酸化鉄微粒子を用意する(第1工程)。次に、水素を含むプラズマによって前記酸化鉄微粒子に対する還元処理を行い、前記酸化鉄微粒子からα−Fe金属微粒子を形成する(第2工程)。更に、窒素を含むプラズマによってα−Fe金属微粒子に対する窒化処理を行い、α−Fe金属微粒子からFe162化合物微粒子を形成する(第3工程)。第2工程と第3工程との間において前記α−Fe金属微粒子を大気に暴露しない、窒化鉄系磁性微粒子の製造方法。 (もっと読む)


【課題】 保磁力、角形比に優れ、更に大気中350℃以上でも発火することなく磁気特性を保持することが可能な希土類−鉄−窒素系磁性粉末およびその製造方法を提供することを目的とする。
【解決手段】 一般式R100−x−y−zで表される磁性粉末であって、 前記M成分は、粉体内部の表面側に偏在していることを特徴とする(但し、RはYを含む希土類元素のうちの少なくとも一種、TはFeと遷移金属のうちの少なくとも一種、Mは300℃〜1200℃において標準ギブスエネルギーが−80kcal〜−300kcalの範囲である少なくとも一種の元素あるいはその酸化物であり、3<x<30、5<y<15、0.001<z<5である。)。 (もっと読む)


【課題】磁性粉を高充填した場合においても磁性粉の流動性を高め得、また磁性粉と熱可塑性樹脂バインダとを良好に密着接触させ得て、磁石製品の破壊強度を高強度となし得る希土類ボンド磁石の射出成形による製造方法を提供する。
【解決手段】希土類鉄系合金から成る磁性粉10に熱可塑性樹脂バインダを添加及び混練して成るボンド磁石材を射出成形して目的とする形状のボンド磁石とする製造方法において、先ず磁性粉10の表面を熱可塑性樹脂バインダ12Aにてコーティングするコーティング処理を1次混練として行い、しかる後にコーティング処理した磁性粉10に熱可塑性樹脂バインダ12Bを添加及び混練する2次混練を行ってボンド磁石材となし、これを射出成形する。 (もっと読む)


【課題】水素還元熱処理することによってFeの粗大化部分の形成が抑制されて個々の粒子が孤立したFePd/Fe磁性ナノ粒子を与え得るPd/Feナノ粒子、その製造方法、およびFeの粗大化部分の形成が抑制されて個々の粒子が孤立しているFePd/Fe磁性ナノ粒子を提供する。
【解決手段】TEM像、HAADF像およびEDXによる元素分析の少なくとも1つで評価してコア/シェル構造が確認できるPdコア相とFeシェル相とからなり、EDXで求めた平均のPd組成比率が50atm%以下であるコア/シェル型のPd/Feナノ粒子、そのコア/シェル型のPd/Feナノ粒子の製造方法、コア/シェル型Pd/Feナノ粒子を水素還元熱処理してなるFePd/Feナノ粒子。 (もっと読む)


【課題】リーダー/ライター交信用スパイラルアンテナと携帯端末筐体セルの金属面との間にフェライト系コンポジットシートを挿入した携帯端末用通信装置において、最大の通信機能が発現されるフェライト系コンポジットシート及びその製造方法及びそれを使用した携帯端末用通信装置を提供することを目的とする。
【解決手段】フェライト系粒子11と樹脂12により構成されたコンポジットシートであり、フェライト系粒子11が3次元的に連結した骨格を有し、骨格の間隙が樹脂12により埋設されたことを特徴とするものである。さらに、フェライト系粒子11の平均粒子径及び充填率を限定したものである。 (もっと読む)


【課題】粒子の焼結を防止し、粒度分布が狭く、高密度記録に適した高容量のコンピュータ用バックアップ磁気テープに使用する窒化鉄系磁性粉末を得ることを目的とする。
【解決手段】フェライト相を主体とする鉄系酸化物相の表面を鉄系水酸化物相で被覆した部分を有する複合粒子を出発原料とする窒化鉄系磁性粉末を製造する方法を提供する。 (もっと読む)


【課題】粒子の焼結を防止し、粒度分布が狭く、高密度記録に適した高容量のコンピュータ用バックアップ磁気テープに使用する窒化鉄系磁性粉末を得ることを目的とする。
【解決手段】特定元素の水溶性化合物の水溶液と金属酸化物粒子あるいは特定元素の水溶性化合物の水溶液と金属水酸化物粒子を含む水分散体をメディア型分散機を用いて特定元素を被着させた金属酸化物粒子あるいは金属水酸化物粒子を製造する工程を含む窒化鉄系磁性粉末を製造する方法を提供する。 (もっと読む)


【課題】生産性の低下を生じず、かつ十分な機械的強度を有するボンド磁石を得ることができる希土類ボンド磁石の製造方法を提供する。
【解決手段】フレーク状の希土類磁性粉を1次粒子として、当該1次粒子と熱硬化性樹脂を混合して金型内で圧縮成形し、硬化処理して粉砕することによって2次粒子を得、当該2次粒子を熱可塑性樹脂と混合して射出成形する。2次粒子を構成する1次粒子はフレーク状の平面同士が接合された状態で複数が積層されており、2次粒子の長径(L)と厚み(D)の比(L/D)は3以下である。 (もっと読む)


【課題】有機酸塩法により、粒子径が小さく、しかも粒度が揃った酸化物微粒子粉末が得られる酸化物微粒子粉末の製造方法を提供すること。
【解決手段】本発明の酸化物微粒子粉末の製造方法は、金属錯体ゲルの乾燥粉を、第1の雰囲気下で熱処理して焼成粉を得る第1工程と、焼成粉を、第1の雰囲気よりも酸素濃度が高い第2の雰囲気下で熱処理して酸化物微粒子粉末を得る第2工程とを有する。 (もっと読む)


【課題】高密度記録において高S/Nを達成可能な六方晶フェライト磁性粉末および上記六方晶フェライト磁性粉末を用いた高密度記録に適した磁気記録媒体の提供。
【解決手段】六方晶フェライト形成成分および30質量%以上のガラス形成成分を含む原料混合物を溶融し溶融物を得ること、上記溶融物を急冷し非晶質体を得ること、上記非晶質体を加熱処理し六方晶フェライト磁性粒子を析出させること、上記加熱処理により得られた物質を酸溶液中で湿式粉砕すること、ならびに、上記湿式粉砕物を水洗すること、を含む六方晶フェライト磁性粉末の製造方法。比表面積が120m2/g以下の六方晶フェライト磁性粉末を製造する。 (もっと読む)


【課題】保磁力(HcJ)および角形性(Hk)に優れた希土類−鉄−窒素系合金粉末を収率よく、かつ、低コストで製造する。
【解決手段】希土類酸化物粉末および鉄粉末を含む原料粉末と、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤を混合した後、希土類酸化物粉末を還元して希土類元素を鉄に拡散させて、希土類−鉄系母合金粉末と副生成物とを含有する多孔質塊状反応生成物を得る際に、前記還元剤として、4.75mm以下の粒径を有し、かつ、70質量%以上が0.5mmを超え、2.5mm以下である粒径を有するものを用い、その後、得られた多孔質塊状反応生成物を、窒素を含有する雰囲気中で熱処理して、窒化された希土類−鉄系合金粉末を得て、さらに、湿式処理により、該合金粉末から前記副生成物を除去して、希土類−鉄−窒素系合金粉末を分離する。 (もっと読む)


【課題】磁化の温度依存性が大きい感温磁性粒子、その製造方法及び感温磁性流体を提供すること。
【解決手段】感温磁性粒子は、FexNbyVzBw…(1)(式中のxは0.1<x<0.9、yは0.01<y<0.1、zは0.01<z<0.1、wは0.01<w<0.5を満足する)で表される組成を有する。
感温磁性粒子の製造では、(1)ハロゲン化ニオブ化合物の水溶液と、メタバナジウム酸塩化合物の酸性水溶液と、第一鉄塩化合物の水溶液を混合して、酸性混合水溶液を得、(2)酸性混合水溶液にテトラヒドロホウ酸塩化合物の水溶液を添加して、アルカリ性混合水溶液を得、(3)アルカリ性混合水溶液を攪拌して反応させ、生成した沈殿を濾過し、洗浄し、乾燥する。
感温磁性流体は、この感温磁性粒子を溶媒に分散させて成る。溶媒が液体ガリウムであり、感温磁性粒子がシリカ被膜を備える。 (もっと読む)


101 - 120 / 314