説明

Fターム[5E040NN06]の内容

硬質磁性材料 (8,571) | 数値限定の対象 (1,979) | 磁性体の構造 (408)

Fターム[5E040NN06]に分類される特許

81 - 100 / 408


【課題】 本発明は、六方晶フェライト粒子粉末に関するものであり、平均板面径が10〜20.5nmである六方晶フェライト粒子粉末を工業的な生産性に優れた水熱合成法によって得るものである。
【解決手段】 バリウム、ストロンチウム、及びカルシウムより選ばれた少なくとも1種の金属イオンを含む金属塩と鉄化合物、並びに、2価乃至5価の金属元素から選ばれる1種又は2種以上の金属塩を混合した懸濁液を、アルカリ水溶液に添加した後、オートクレーブを用いて100〜300℃の温度範囲で反応し、得られた六方晶フェライト粒子の前駆体を濾別・乾燥し、次いで、融剤の存在下で600〜780℃の温度で焼成した後、融剤を除去することによって得られる六方晶フェライト粒子粉末の製造法において、前記懸濁液をアルカリ水溶液に添加する際に、20分以上かけて徐添加することによって六方晶フェライト粒子粉末を得ることができる。 (もっと読む)


【課題】R−T−B系合金中のDy濃度を高くすることなく、高い保磁力(Hcj)が得られ、しかもDyを添加したことによる磁化(Br)の低下を抑制でき、優れた磁気特性が得られるR−T−B系希土類永久磁石を提供する。
【解決手段】RFe14Bを主として含む主相と、主相よりRを多く含む粒界相とを備えた焼結体からなり、RはNdを必須元素として含む希土類元素であり、前記焼結体はGaを必須元素として含み、前記粒界相が、希土類元素の合計原子濃度の異なる第1粒界相と第2粒界相と第3粒界相とを含み、前記第3粒界相は、前記第1粒界相および前記第2粒界相より前記希土類元素の合計原子濃度が低く、かつ前記第1粒界相および前記第2粒界相よりFeの原子濃度が高いR−T−B系希土類永久磁石とする。 (もっと読む)


【課題】本発明は、高保磁力,高磁束密度,高比抵抗を有する希土類磁石及びそれを用いた回転機を提供する。
【解決手段】鉄,希土類元素及びフッ素を主成分とする強磁性材料からなる希土類磁石であって、結晶粒内又は粒界に、少なくとも1種の軽希土類元素を含むフッ素化合物又は酸フッ素化合物が形成され、フッ素化合物又は酸フッ素化合物と、結晶粒内又は粒界との間に、4回対称性の結晶構造を有するRlFemn(Rは軽希土類元素、l,m,nは1以上の整数)が存在し、フッ素の濃度が、結晶粒内よりも粒界で高いことを特徴とする希土類磁石。 (もっと読む)


【解決手段】R(RはY及びScを含む希土類元素のうちの1種又は2種以上の組み合わせ)、T(TはFe、又はFe及びCo)、B、Ni、Si、Cu、及びM(MはGa、Zr、Nb、Hf、Ta、W、Mo、Al、V、Cr、Ti、Ag、Mn、Ge、Sn、Bi、Pb及びZnから選ばれる1種又は2種以上の組み合わせ)を含有し、Rが26〜36質量%、Bが0.5〜1.5質量%、Niが0.1〜2.0質量%、Siが0.1〜3.0質量%、Cuが0.05〜1.0質量%、Mが0.05〜4.0質量%、残部がT及び不可避不純物である組成を有する焼結体からなるR−T−B系希土類焼結磁石。
【効果】本発明のNd−Fe−B系希土類焼結磁石は、NiとSiとCuとが複合添加されており、これにより、高磁気特性、かつ高耐食性の希土類焼結磁石を提供することができる。 (もっと読む)


【課題】成形性に優れ、酸化し難い磁性部材用粉末、この粉末から得られる粉末成形体、及び希土類磁石といった磁性体の素材に適した磁性部材を提供する。
【解決手段】磁性部材用粉末を構成する各磁性粒子1が、40体積%未満の希土類元素の水素化合物3と、残部が鉄と、鉄及びホウ素を含む鉄-ホウ素合金とを含む鉄含有物2からなる。鉄含有物2の相中に希土類元素の水素化合物3の相が離散して存在している。磁性粒子1の表面に酸素の透過係数が小さい酸化防止層4を具える。磁性粒子1中に鉄含有物2の相が均一的に存在することで、この粉末は成形性に優れる上に、粉末成形体の密度を高め易い。酸化防止層4を具えることで、成形時に磁性粒子1に形成された新生面が酸化され難く、酸化物の存在による磁性相の低下を抑制できる。 (もっと読む)


【課題】磁気特性に優れる希土類磁石が得られ、成形性に優れる磁石用粉末、及びその製造方法、粉末成形体、希土類-鉄-ホウ素系合金材を提供する。
【解決手段】磁石用粉末を構成する磁性粒子1は、鉄含有物の相2中に希土類元素の水素化合物の相3の粒子が分散して存在する組織を有する。磁性粒子1中に鉄含有物の相2が均一的に存在することで、この粉末は成形性に優れる上に、粉末成形体4の密度を高め易い。この磁石用粉末は、希土類-鉄-ホウ素系合金(R-Fe-B系合金)の粉末を水素雰囲気中、R-Fe-B系合金の不均化温度以上の温度で熱処理して希土類元素と鉄含有物とを分離し、かつ、希土類元素の水素化合物を生成することで得られる。この磁石用粉末を圧縮成形して粉末成形体4が得られ、この粉末成形体4を真空中で熱処理してR-Fe-B系合金材5が得られ、R-Fe-B系合金材5を着磁して、R-Fe-B系合金磁石6が得られる。 (もっと読む)


【課題】湿式粉砕を用いた場合であっても、焼結前に磁石粒子の含有する炭素量を予め低減させることができ、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、有機溶媒中でビーズミルにより粉砕し、その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。続いて、焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】電気電子機器やロボットなどの駆動源として利用される微小な回転電気機械のトルクを向上させる。
【解決手段】外部磁界Hexに対するトルク勾配dT/dHexは、試料を膜またはフレーク状粉末としたとき、それらの寸法比L/Dの原点をゼロとした一次関数となる。面内方向磁化の場合、フレーク状粉末よりも膜のトルク勾配dT/dHexの方が、寸法比L/Dの依存性が強い。これは、フレーク状粉末よりも膜のパーミアンスが高く、結果として反磁界が小さくなるために試料の寸法比L/Dの影響を受けにくい。両者のトルク勾配dT/dHexの比から本発明の積層磁石膜可動子を用いた回転電気機械のトルク定数は、355μm以下、厚さ45μmのフレーク状粉末の場合に比べて1.13倍となる。 (もっと読む)


【課題】有機金属化合物に含まれるV、Mo、Zr、Ta、Ti、W又はNbを磁石の粒界に対して偏在配置することが可能な永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に、均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】少ない量の重希土類元素RHを効率よく活用し、磁石が比較的厚くとも、磁石全体にわたって主相結晶粒の外郭部に重希土類元素RHを拡散させたR−Fe−B系希土類焼結磁石を提供する。
【解決手段】まず軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石体を用意する。次に、焼結磁石体の表面に金属元素M(MはAl、Ga、In、Sn、Pb、Bi、Zn、およびAgからなる群から選択された少なくとも1種)を含有するM層を堆積した後、重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を含有するRH層をM層上に堆積する。この後、焼結磁石体を加熱し、表面から金属元素Mを焼結磁石の内部に拡散させ、また、表面から重希土類元素RHを焼結磁石体の内部に拡散させる。 (もっと読む)


【課題】磁気特性の高い永久磁石を製造することが可能な希土類磁石用合金及び希土類磁石用合金の製造方法を提供する。
【解決手段】希土類磁石用合金は、R214B相(RはNdを含む1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表す)を含む主相と、R相及びR1+δ44相を含む粒界相とを有し、粒界相におけるR相の体積%とR1+δ44相の体積%との和に対するR1+δ44相の体積%の割合が0.25以上である。 (もっと読む)


【課題】 Sm−Co型磁石の鉄濃度の向上を図った上で焼結性および焼結体密度を改善し磁化を向上した永久磁石と、それを用いた可変磁束モータおよび可変磁束発電機を提供することを目的とする。
【解決手段】 本実施形態の永久磁石は、組成式:R(FepqCurCo1-p-q-rZ’ (式中、RはYを含む希土類元素から選ばれる少なくとも1種の元素、MはTi、ZrおよびHfから選ばれる少なくとも1種の元素を示し、p、q、rおよびzはそれぞれ原子比で0.25≦p≦0.6、0.005≦q≦0.1、0.01≦r≦0.1、6≦z≦9、0.003≦z’≦0.6を満足する数である)で表される焼結体を有し、この焼結体は前記Rを含む酸化物の凝集体がほぼ一様に分散していることを特徴としている。 (もっと読む)


【課題】永久磁石中にα−Feが生成されることを抑制することが可能な永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末をジェットミル粉砕分級システム32へと搬送し、所定の範囲(例えば0.1μm〜5.0μm)の粒径のものを分級して回収し、回収された磁石粉末に対して、M−(OR)x(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石の粒子表面に対して均一に有機金属化合物を付着させた後に、成形及び焼結を行うことによって永久磁石を製造する。 (もっと読む)


【課題】軟磁性合金粉末の脱落を抑制しつつ、電磁波吸収特性が向上する電磁波ノイズ抑制体およびその製造方法を提供する。
【解決手段】電磁波ノイズ抑制体10は、軟磁性合金粉末11と結着材12とを含む複数の合金粉末層13を積層して構成されている。合金粉末層13の上面13a付近では、軟磁性合金粉末11の含有量が相対的に低く、合金粉末層13の下面13b付近では、軟磁性合金粉末11の含有量が相対的に高くなっている。複数の合金粉末層13は、合金粉末層13の上面13aを電磁波ノイズ抑制体10の外表面に配置するように積層されている。 (もっと読む)


【課題】製造工程における作業効率の高効率化を図ることが可能となるとともに、成形工程においては微小トルクでの配向を行うことが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒を添加してスラリー42を生成し、その後、成形装置50においてキャビティ54に注入したスラリー42に対して磁場を印加した状態で圧力を加えて成形し、その後に有機溶媒を揮発させて成形体を得る。次に、成形体を水素雰囲気において水素中仮焼処理を行い、800℃〜1180℃で焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】焼結時における単磁区粒子径を有する磁石粒子の粒成長を抑制するとともに、磁気性能を向上させた永久磁石及び永久磁石の製造方法を提供する。
【解決手段】単磁区粒子径に粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃〜600℃で数時間保持することにより脱水素処理を行う。 (もっと読む)


【課題】高いBr、HcJ及びHk/HcJを有する永久磁石を得ることが出来るフェライト磁性材料、ならびにフェライト磁石を提供する。
【解決手段】六方晶構造を有するフェライト相からなる主相を有するフェライト磁性材料であって、Ca1−w−x−ySrBaFeで表される金属元素の組成を有し、0.25<w<0.5、0.01<x<0.35、0.0001<y<0.013、y<x、8.7<z<9.9、1.0<w/m<2.1、0.017<m/z<0.055を満たし、副成分として少なくともSi成分を含み、前記フェライト磁性材料中の前記Si成分のSiO換算での含有量y1質量%をY軸に表わし、前記zとmの合計量x1をX軸に表わしたときに、x1とy1の関係が、X−Y座標における所定の4つの点で囲まれる範囲内にあるフェライト磁性材料、ならびにそのフェライト磁性材料からなるフェライト磁石。 (もっと読む)


【課題】優れた着磁特性を有するR−T−B系永久磁石を提供する。
【解決手段】粉砕されたR−T−B系磁石の微粉末に対して、M−(OR)(式中、MはAl、Cu、Zr、Nb、Hf、Coの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】めっき膜の密着性に優れるとともに優れた磁気特性を有する希土類焼結磁石を提供すること。
【解決手段】希土類化合物を含む磁石素体と、磁石素体の上にニッケル又はニッケル合金を含むめっき膜と、を備え、磁石素体の表面部の方が、表面部に囲まれた磁石素体の内部よりも重希土類元素の含有率が高い希土類焼結磁石10。 (もっと読む)


【課題】希少資源である重希土類元素を使用せずに磁性材料の特性を改善すること。
【解決手段】磁粉へのフッ素の導入および結晶粒内での結晶方位を制御することで保磁力や残留磁束密度などの磁気特性を確保した磁性材料を作製できる。その結果、重希土類元素の資源問題を解決でき種々の回転機やハードディスクのボイスコイルモータを含む高エネルギー積を必要とする磁気回路に適用できる。 (もっと読む)


81 - 100 / 408