説明

Fターム[5E078BA28]の内容

電気二重層コンデンサ等 (17,975) | 電極 (4,664) | 活物質 (1,982) | 金属酸化物 (137) | 酸化ルテニウム (18)

Fターム[5E078BA28]に分類される特許

1 - 18 / 18


【課題】長期使用後においても電気化学デバイスの容量の低下及び抵抗の増加を軽減することができ、電気化学デバイスのサイクル特性、耐久性及び信頼性を向上させることができる電解液、及びそれを用いた電気化学デバイスを提供する。
【解決手段】同一又は異なる水素、メチル、エチルとアニオンの化合物と、同一又は異なるメチル、エチル、メトキシチル、又はエトメチルとアニオンの化合物と、同一又は異なる炭素数1〜10のアルキル基、メトキシ、メチル、又はエトキシメチルと同一又は異なる水素、メチル、又はエチルとアニオンの化合物の群より選択される少なくとも一種とを含有する電気二重層キャパシタ用電解液。 (もっと読む)


【課題】水系電解液を用いた擬似容量キャパシタにおいて、水の電気分解の理論電圧を超えた作動電圧で充放電できる。
【解決手段】評価セル10は、正極側集電体12と負極側集電体14との間に樹脂製のケース16が配置され、このケース16の中心孔16a内にキャパシタ構造20を備えたものである。キャパシタ構造20は、中心孔16aの上部に配置された正極22と、中心孔16aの下部に配置された負極24と、中心孔16aの段差16bに配置された固体電解質板26と、Liイオンを含む水系電解液が充填された第1液室28、Liイオンを含む非水系電解液が充填された第2液室30とを備えている。正極22はレドックス変化が可能な金属酸化物を含む電極であり、負極24はLiイオンを吸蔵・放出可能な電極であり、固体電解質板26はLiイオン伝導性を有し、水系電解液と負極24との接触を妨げる役割を果たす。 (もっと読む)


【課題】高温環境で長時間使用でき、リフロー耐熱性に優れる非電気二重層型キャパシタを提供する。
【解決手段】フィブリル化全芳香族ポリアミド繊維A、平均繊維径0.6〜4.0μmのガラス繊維Bの少なくとも一方を必須成分として含有し、且つ繊度0.06〜0.5dtexの非フィブリル化繊維Cを1種類以上含有する湿式不織布からなるセパレータを具備してなることを特徴とする非電気二重層型キャパシタ。 (もっと読む)


【課題】容量を高めることが可能な電気化学キャパシタを提案する。
【解決手段】基板の一平面上に正極と負極が形成される電気化学キャパシタである。また、電解質と、電解質の同一平面に接する正極及び負極とを有する。即ち、電解質の一平面上に接する正極活物質及び負極活物質と、正極活物質に接する正極集電体と、負極活物質に接する負極集電体とを有する電気化学キャパシタである。当該構成により、電気化学キャパシタの容量を増大させることができる。 (もっと読む)


【課題】製造が容易で低コストな電解質、及び、そのような電解質を有する蓄電デバイスを得ることを課題とする。
【解決手段】正極集電体と、正極活物質を有する正極と、負極集電体と、負極活物質を有する負極と、正極及び負極との間に設けられた1−ピペリジン−1−プロパンスルホン酸、あるいは、1−ピペリジン−1−ブタンスルホン酸を含む電解質とを有する蓄電デバイスに関する。作製した電解質に水を加える、及び、蓄電デバイスの温度を上げると、さらに大きな容量を得ることができる。 (もっと読む)


【課題】室温で使用可能なレドックスキャパシタ及びその作製方法を提供する。
【解決手段】レドックスキャパシタの電解質として、水素を含む非晶質半導体を用いる。水素を含む非晶質半導体の代表例としては、非晶質シリコン、非晶質シリコンゲルマニウム、または非晶質ゲルマニウム等の半導体元素を有する非晶質半導体がある。また、水素を含む非晶質半導体の他の例としては、水素を含む酸化物半導体があり、代表例としては、酸化亜鉛、酸化チタン、酸化ニッケル、酸化バナジウム、または酸化インジウム等の一元系酸化物半導体を有する非晶質半導体がある。または、水素を含む酸化物半導体の他の例としては多元系酸化物半導体があり、代表的にはInMO(ZnO)(m>0、MはGa、Fe、Ni、Mn及びCoから選ばれた一の金属元素または複数の金属元素)がある。 (もっと読む)


2,000m2/gより大きい表面積を有する電気伝導性炭素ネットワーク(15)と、MnO2等の擬似容量金属酸化物(16)とを、有するナノコンポジット電極を使用することにより、高エネルギー密度スーパーキャパシタを提供する。導電性炭素ネットワーク(15)を多孔質金属酸化物構造に組み込んで、金属酸化物(16)の大部分を電荷貯蔵に利用するために十分な電気伝導性を導入し、及び/又は、導電性炭素ネットワーク(15)の表面を金属酸化物で装飾して、電荷貯蔵用ナノコンポジット電極中の擬似容量金属酸化物の表面積及び量を増加させる。 (もっと読む)


【課題】金属酸化物から構成され、特に、高静電容量(比容量)のレドックスキャパシタ電極を得るための電極活物質成型体の新規な製造方法を提供する。
【解決手段】非晶質のルテニウム酸化物水和物に対して、加圧下に直流パルス電流を通電する工程を含むことにより、含水量が高く、非結晶性を維持したルテニウム酸化物からなる電極用焼結成型体を製造する。 (もっと読む)


【課題】高い容量と優れた応答性を発現し得る蓄電デバイス用複合電極、その製造方法、及び蓄電デバイス用複合電極を用いた蓄電デバイスを提供すること。
【解決手段】蓄電デバイス用複合電極は、基材と、該基材の表面に形成され、金属及び金属化合物の一方又は双方を含有するウィスカー又はファイバーと、該ウィスカー又はファイバーの表面に形成され、活物質を含有し、且つ表面に凹凸を有する被覆層とを有する。
蓄電デバイスは、上記蓄電デバイス用複合電極と、電解質とを有する。
蓄電デバイス用複合電極の製造方法は、ウィスカー又はファイバーの構成金属を含む基材原料又はその前駆体を、酸化雰囲気中で加熱処理して、基材上に該ウィスカー又は該ファイバーを形成する工程(1)と、その後に実施され、該ウィスカー又はファイバーの表面に、活物質を含有し且つ表面に凹凸を有する被覆層を形成する工程(2)を含む。 (もっと読む)


【課題】ハイブリッドタイプのスーパーキャパシタが有する、全体セルポテンシャルの増加によりエネルギー及び出力密度が増加するという長所をそのまま保持しながら、電流集電体及びバインダのない一体型電極を用いることにより、電極内部抵抗及びESRを最小化できるハイブリッドスーパーキャパシタを提供する。
【解決手段】炭素エアロゲルアノードと、遷移金属酸化物エアロゲルカソードとを含む、ハイブリッドスーパーキャパシタである。 (もっと読む)


【課題】酸化ルテニウム電極と(硫酸などの)多塩基酸を含む水性電解質とを含む電気化学セルを有するキャパシタを提供する。
【解決手段】より具体的には、電極が各々、酸化ルテニウムと(アルミナ、シリカなどの)無機酸化物粒子とを組み合わせて形成した酸化金属膜でコーティングされた基板を含む。理論によって制限することを意図するわけではないが、無機酸化物粒子は、水性電解質内の(プロトン生成などの)プロトン移動を促進して、水和無機酸化物錯体を形成する(例えば[Al(H2O)63+]から[Al2(H2O)8(OH2)]4+を形成する)ことができると考えられる。従って、無機酸化物は、水を吸収するとともにプロトン及び分子結合した水酸基架橋に可逆的に開裂するための触媒の機能を果たす。電解質内の(硫酸イオン及び硫酸水素イオンなどの)アニオンは、生成されたアクア錯体の配位圏内に拘束されていないので、これらのアニオンは電位範囲にわたる追加の静電容量を得るために必要なこれらの錯体の縮合を妨げない。この結果、イオン電荷は分離した状態を保ち、この化学過程により擬似容量を発生させることができる。これにより、結果として電極の電荷密度及び静電容量の増大をもたらすことができる。 (もっと読む)


【課題】比容量及び電気伝導度に優れ、機械的、熱的及び電気的に安定性の高いスーパーキャパシタ用電極を提供する。
【解決手段】スーパーキャパシタ用電極は、集電体と、前記集電体の少なくとも一面上に形成された多孔性複合金属酸化物層とを備えている。前記多孔性複合金属酸化物層は、電界が印加された状態における紡糸及びその後の熱処理によって形成された超極細繊維がもつれ合ったウェブ状態であり、マンガン酸化物及びマンガン酸化物よりも高い電気伝導性を有する導電性金属酸化物のナノ粒子を含む。 (もっと読む)


【課題】エネルギー密度が高い電気化学キャパシタ用電極とその製造方法、及び電気化学キャパシタを提供する。
【解決手段】導電基材上に製膜担持させた、ルテニウム、および酸化ルテニウムを主体とする空隙層であって、該空隙層の空隙率が表面から該導電基材方向に向けて小さくなっていることを特徴とする電気化学キャパシタ用電極及び電気化学キャパシタ。 (もっと読む)


【課題】所定の電圧に高電圧化が可能な電気化学キャパシタの製造方法を提供。
【解決手段】離型シート上に電子伝導層用ペーストを塗布して電子伝導層を形成し、該電子伝導層上に電極用ペーストを塗布して電極−電子伝導層接合体を形成し、得られた1対の電極−電子伝導層接合体で高分子電解質膜を挟持して接合した後、離型シートを剥離して、電子伝導層−電極−電解質膜−電極−電子伝導層からなる構造体を形成し、該電子伝導層−電極−電解質膜−電極−電子伝導層からなる構造体から所定の大きさに切抜いた複数の構造体と複数の集電体とを、最外部が集電体となるように交互に積層して一体化させた積層体を形成することを含む電気化学キャパシタの製造方法。 (もっと読む)


【課題】高容量特性を有する電気化学素子用電極を提供する。
【解決手段】旋回反応器内に、所定量の水、超音波によって塩化ルテニウムを溶解した塩化ルテニウム水溶液及びケッチェンブラックを投入し、所定の遠心力で1〜20分間撹拌し、さらに水酸化ナトリウムを添加して所定の遠心力で30秒〜10分間、内筒を旋回して外筒の内壁に反応物の薄膜を形成すると共に、反応物にずり応力と遠心力を加えて化学反応を促進させ、酸化ルテニムナノ粒子を高分散担持したケッチェンブラックを得る。得られた酸化ルテニウム・ケッチェンブラック複合体をフィルターフォルダーに通してろ過し、100℃で12時間真空乾燥することにより、酸化ルテニウムナノ粒子がケッチェンブラックに高分散担持された複合体粉末を得る。この複合体粉末を用いて電極を形成する。 (もっと読む)


【課題】容量特性及びサイクル特性に優れた電気化学素子用電極を提供する。
【解決手段】旋回反応器内に、所定量の水、超音波によって塩化ルテニウムを溶解した塩化ルテニウム水溶液、上記ファイバー状の層状カーボンを投入し、所定の遠心力で1〜20分間撹拌し、さらに水酸化ナトリウムを添加して所定の遠心力で30秒〜10分間、内筒を旋回して外筒の内壁に反応物の薄膜を形成すると共に、反応物にずり応力と遠心力を加えて化学反応を促進させ、酸化ルテニムナノ粒子を高分散担持したCNF−Pを得る。得られた酸化ルテニウム・CNF−P複合体をフィルターフォルダーに通してろ過し、80℃で真空乾燥することにより、酸化ルテニウムナノ粒子がCNF−Pに高分散担持された複合体粉末を得る。さらに、得られた複合体粉末を200℃、窒素雰囲気下で焼成することによって酸化ルテニウム・CNF−P複合体を得る。この複合体を用いて電気化学素子用電極を形成する。 (もっと読む)


【課題】MRuO2(M=アルカリ金属)型の層状ルテニウム酸アルカリ金属化合物由来のルテニウム酸ナノシート、及びその製造方法を提供する。
【解決手段】式:[RuO2x―(0<x<1)で表されるルテニウム酸ナノシート、及び(a)IV価以上の原子価の酸化ルテニウムとアルカリ金属化合物等との混合物を、金属ルテニウム粉末と混合し、アルカリ金属型層状ルテニウム酸化合物を得る工程、(b)前記ルテニウム酸化合物を臭素溶液で処理し、プロトン型層状ルテニウム酸を得る工程、(c)前記ルテニウム酸を水和処理してプロトン型層状ルテニウム酸水和物を得る工程、(d)前記ルテニウム酸水和物にアルキルアンモニウム化合物等を反応させてアルキルアンモニウム−層状ルテニウム酸層間化合物を得る工程、及び(e)前記ルテニウム酸層間化合物を溶媒と混合し分散させ、ルテニウム酸ナノシートコロイドを得る工程を含む、上記ルテニウム酸ナノシートの製造方法。 (もっと読む)


【課題】高容量および高出力特性を備えるハイブリッド電極およびその製造方法を提供する。
【解決手段】本発明のハイブリッド電極(1)は、基板(12)、電子導体である一次元ナノ構造(14)、および水和酸化ルテニウム(16)を含む。水和酸化ルテニウム(16)は電子導体である一次元ナノ構造(14)の間隙に充填される。該電子導体は無水酸化ルテニウムまたは無水酸化イリジウムとすることができる。また、本発明のハイブリッド電極1は、一次元ナノ構造(14)の一部を還元してなる金属層をさらに含んでいてもよい。本発明のハイブリッド電極は、限られたスペースにおいて高出力と高容量を同時に実現する。 (もっと読む)


1 - 18 / 18