説明

Fターム[5F045AA04]の内容

気相成長(金属層を除く) (114,827) | 成長法 (11,750) | 熱分解法 (4,935) | MOCVD (2,938)

Fターム[5F045AA04]の下位に属するFターム

Fターム[5F045AA04]に分類される特許

121 - 140 / 2,708


【課題】結晶膜を基板の上に成長させる化学気相成長(CVD)の量産では、均一性を改良しながらバッチサイズを大きくする装置構造が課題である。装置の部品の洗浄交換周期を長くし、CVDガスの基板上での消費効率を上げて、排気系のポンプや排気配管への付着を減らしたい。さらに有機金属ガスをCVDガスとして用いるとき、気相で重合反応を起こし粒子ゴミを発生させるので、加熱空間を横切る流路を短くしたい。これらの要求を満たす装置の構造が課題である。
【解決手段】表面に基板を載せる複数の加熱されるサセプタを立てて放射状に配置させ、当該放射状配置のサセプタを回転させながら外周から熱分解CVDガスを供給して当該基板の上にCVD膜を成長せしめ、当該放射状配置サセプタの配置中心に加熱可能な排気管が配置されてあり、当該CVDガスを当該排気管から排気することで、課題を解決する結晶膜の気相成長装置が可能である。 (もっと読む)


【課題】六角棒状GaN系半導体結晶の新規な製造方法を提供する。
【解決手段】GaN系半導体からなり、m面である表面を有する下地結晶10の前記表面上に、前記下地結晶10のc軸に沿って延びる複数のストライプ22を含むマスク20を形成する工程と、前記マスク22が形成された前記表面の上にGaN系半導体結晶30をエピタキシャル成長させる工程と、を含む六角棒状GaN系半導体結晶の製造方法において、GaN系半導体結晶30は下地結晶10の露出面15から成長し始め、マスク20と略同じ厚さのGaN系半導体結晶膜40がまず形成される。更にGaN系半導体結晶30を成長させ続けると、GaN系半導体結晶膜40の上に六角棒状GaN系半導体結晶30が形成される。 (もっと読む)


【課題】 観察窓の位置に係わらず反応ガスの逆拡散を抑え、観察窓の曇りを防止した気相成長装置を提供する。
【解決手段】 反応ガスを供給して基板の被成膜面に成膜する気相成長装置であって、基板を保持する基板保持台と、基板保持台と対向して配置され、基板と対向する位置に貫通穴を有するシャワーヘッドと、内部にパージガスを充満し、貫通穴を介して前記基板の被成膜面を臨み得る観察窓を有するビューポートとを備え、基板と貫通穴の間に流す反応ガスの方向と、貫通穴と観察窓の間に流すパージガスの方向が逆方向であることを特徴とする。 (もっと読む)


【課題】化合物半導体層全体の膜厚を抑制しつつ、半導体素子の高い性能と信頼性を両立することのできる化合物半導体基板を提供する。
【解決手段】シリコン単結晶の基板12と、基板上に形成される化合物半導体の第1の半導体層16と、第1の半導体層上に形成され、第1の半導体層よりもバンドギャップエネルギーの大きい、化合物半導体の障壁層18と、障壁層上に形成され、障壁層よりもバンドギャップエネルギーの小さい化合物半導体の第2の半導体層20と、第2の半導体層上に形成され、第2の半導体層よりもバンドギャップエネルギーの大きい化合物半導体の第3の半導体層22とを有することを特徴とする化合物半導体基板。 (もっと読む)


【課題】 固体原料或いは液体原料を加熱して生成した原料蒸気を圧力式流量制御装置を用いて流量制御しつつプロセスチャンバへ安定して供給できるようにすることにより、原料の気化供給装置の小型化と、半導体製品の品質向上を図ると共に、原料の残量管理を容易に出来るようにする。
【課題解決手段】 原料を貯留したソースタンクと,ソースタンクの内部空間部から原料蒸気をプロセスチャンバへ供給する原料蒸気供給路と,当該原料蒸気供給路に介設されプロセスチャンバへ供給する原料蒸気流量を制御する圧力式流量制御装置と,前記ソースタンクと供給路と圧力式流量制御装置とを設定温度に加熱する恒温加熱部とから成り、ソースタンクの内部空間部に生成した原料蒸気を圧力式流量制御装置により流量制御しつつプロセスチャンバへ供給する。 (もっと読む)


【課題】簡易かつ効果的に、窒化物半導体の絶縁破壊電圧低下が低減された窒化物半導体基板の製造方法を提供する。
【解決手段】シリコン単結晶基板の一主面上に窒化ケイ素層を形成する工程と、前記窒化ケイ素層上に窒化物半導体からなる中間層を形成する工程と、前記中間層上に窒化物半導体からなる活性層を形成する工程と、を含む窒化物半導体基板の製造方法であって、前記窒化ケイ素層を形成する工程は、窒素ガスが90vol%以上100vol%以下で残部は前記窒素ガス以外の不活性ガスからなるガス雰囲気にて室温から900℃以上1000℃以下の到達温度まで昇温する第1ステップと、前記ガス雰囲気と前記到達温度のままで所定時間保持する第2ステップと、その後還元性ガス含有雰囲気に切り替えて所定時間保持する第3ステップと、からなることを特徴とする窒化物半導体基板の製造方法。 (もっと読む)


【課題】リーク電流が増加することなく、オン抵抗を低くすることができる半導体装置を提供する。
【解決手段】基板の上に形成されたバッファ層21と、バッファ層21の上に形成された遷移金属がドープされている高抵抗層22と、高抵抗層22の一部または高抵抗層上に形成された低抵抗となる不純物元素がドープされた低抵抗領域122と、低抵抗領域122を含む領域上に形成された電子走行層23と、電子走行層23の上に形成された電子供給層25と、電子供給層25の上に形成されたゲート電極31、ソース電極32及びドレイン電極33を有する。 (もっと読む)


【課題】窒化物半導体からなる活性層にn型不純物原子をドーピングした場合であっても、活性層に発生する転位を減少することができる技術、あるいは、活性層の結晶破壊を抑制することができる技術を提供する。
【解決手段】ベース基板と、第1結晶層と第2結晶層とが交互に複数積層された積層構造体と、第3結晶層とを有し、前記ベース基板、前記積層構造体および前記第3結晶層が、前記ベース基板、前記積層構造体、前記第3結晶層の順に位置し、前記第1結晶層が、AlGa1−xN、(但し0≦x≦1)からなり、前記第2結晶層が、AlGa1−yN、(但し0≦y≦1、x≠y)からなり、前記第3結晶層が、AlGa1−zN、(但し0≦z≦1)からなり、前記第1結晶層、前記第2結晶層および前記第3結晶層にシリコン原子を含む半導体基板を提供する。 (もっと読む)


【課題】経時劣化が少なく、低損失(バリガ性能指数が1.5GW/cm2以上)の窒化ガリウム整流素子を提供する。
【解決手段】窒化ガリウム整流素子1は、pn接合を形成するp型窒化ガリウム系半導体層及びn型窒化ガリウム系半導体層を備え、前記p型窒化ガリウム系半導体層のキャリアトラップ準位密度が1×1018cm-3以下、又は前記n型窒化ガリウム系半導体層のキャリアトラップ準位密度が1×1016cm-3以下である。 (もっと読む)


【課題】逆方向漏れ電流が抑制されてなるとともに二次元電子ガスの移動度が高い半導体素子を提供する。
【解決手段】下地基板1の上にIII族窒化物層群を(0001)結晶面が基板面に対し略平行となるよう積層形成したエピタキシャル基板10と、ショットキー性電極9と、を備える半導体素子20において、エピタキシャル基板10が、Inx1Aly1Gaz1N(x1+y1+z1=1、z1>0)なる組成の第1のIII族窒化物からなるチャネル層3と、Inx2Aly2N(x2+y2=1、x2>0、y2>0)なる組成の第2のIII族窒化物からなる障壁層5と、GaNからなり障壁層5に隣接する中間層6aと、AlNからなり中間層に隣接するキャップ6b層と、を備え、ショットキー性電極9がキャップ層6bに接合されてなるようにする。 (もっと読む)


【課題】簡易な構成で、有機金属原料の液化や固化によって加圧効率の低下を招くことなく、有機金属ガスを安定的に加圧して反応室に供給する。
【解決手段】加圧ガス供給システム200は、原料ガスXを生成するバブリングユニット212と、原料ガスが導入されるとともに、加圧ガスPが導入されることにより、反応室112よりも高圧の混合ガスMを生成する加圧タンク214と、加圧タンクと反応室との差圧によって混合ガスを反応室に供給する混合ガス供給部216と、加圧タンクで生成された混合ガスが導入されるとともに、混合ガスに含まれる原料ガスを凝縮させて液体の原料Lに戻すガス回収部220と、ガス回収部において凝縮された液体の原料をバブリングユニットに導入する原料導入部222と、を備える。 (もっと読む)


【課題】ドーパントを添加した結晶性の高い導電性α‐Ga薄膜およびその生成方法を提供する。
【解決手段】(a)水、塩酸及び過酸化水素を含む溶液と、ガリウム化合物と、錫(II)化合物とを混合して原料溶液を調製する工程と、(b)前記原料溶液をミスト化し、ミスト状原料を調製する工程と、(c)前記ミスト状原料を、キャリアガスによって基板の成膜面に供給する工程と、(d)前記基板を加熱することにより、前記ミスト状原料を熱分解させ、前記基板上に、4価の錫が添加された導電性α‐Ga薄膜を形成する工程と、を備える結晶性の高い導電性α‐Ga薄膜の生成方法とする。 (もっと読む)


【課題】シリコン基板直上の窒化アルミニウム層の平坦性が低いことに起因する信頼性の低下が抑制された半導体装置を提供する。
【解決手段】シリコン基板10と、シリコン基板上に配置された、不純物としてシリコンがドープされた領域を有する窒化アルミニウム層20と、窒化アルミニウム層上に配置された、複数の窒化物半導体膜が積層された構造のバッファ層30と、バッファ層上に配置された、窒化物半導体からなる半導体機能層40とを備える。 (もっと読む)


【課題】 大きな直径を有する複数枚の基板(4インチ基板、6インチ基板)の表面に、1000℃以上の温度で窒化ガリウムの気相成長を行なっても、基板が割れず高品質の結晶成長が可能な気相成長方法を提供する。
【解決手段】 前記のような基板を保持するためのサセプタ、該サセプタの対面、該基板を加熱するためのヒータ、該サセプタと該サセプタの対面の間隙からなる反応炉、原料ガス導入部、及び反応ガス排出部を有する気相成長装置を用いた窒化ガリウムの気相成長方法であって、基板表面の温度、基板表面と該基板の対面表面との温度差を適切な範囲内に設定し、かつ基板の位置における原料ガスの線速を適切な範囲内となるように原料ガスの供給を調整して基板表面に窒化ガリウム層の形成を行なう気相成長方法とする。 (もっと読む)


【課題】 簡便な手法・構成で、固体材料ガスを安定した濃度で供給することができるとともに、かさ密度の高い固体材料によって内容積あたりの充填量を多くし、不純物が少ない高純度の固体材料からなる固体材料ガスを供給すること。
【解決手段】 キャリアガスCにより所定量の蒸発または昇華・供給が可能な固体材料を、大気圧下または減圧下の融点以上沸点以下の温度条件において加熱し、溶融した状態で冷却・固化させて固体試料Sを作製する固体試料作製手段を有し、キャリアガスCが供給される供給部1と、供給されたキャリアガスCを分散させる分散部2と、固体試料Sが設置される試料設置部3と、該試料設置部3において作製された固体材料ガスGが供出される供出部4と、を有すること。 (もっと読む)


【課題】リーク電流が小さく、かつ、ノーマリオフ動作をするデバイスに適した半導体基板を提供する。
【解決手段】ベース基板と、ベース基板上に設けられた、IIIa族元素を含む窒化物の第1結晶からなる第1エピタキシャル結晶層と、第1エピタキシャル結晶層上に設けられ、第1結晶よりも大きなバンドギャップを有し、かつ、IIIa族元素及びIIIa族元素の一部を置換したIIIb族元素を含む窒化物の第2結晶からなる第2エピタキシャル結晶層とを備える半導体基板を提供する。上記の半導体基板において、第2エピタキシャル結晶層は、第1エピタキシャル結晶層に格子整合又は疑格子整合してもよい。 (もっと読む)


【課題】複数の基板ホルダーをサセプタにより保持するフェイスダウン型の気相成長装置であっても、1000℃を超える気相成長温度を必要とする3族窒化物半導体のフェイスダウン型の気相成長装置であっても、前記サセプタの重力あるいは加熱による変形を抑制できる気相成長装置を提供する。
【解決手段】基板1を保持する基板ホルダー2、及び該基板ホルダーを回転自在に保持するサセプタ3が備えられた気相成長装置であって、中心部が上向きに凸となるように撓ませたサセプタを、基板ホルダーに回転駆動力を伝達するための回転駆動軸10を介して、上から中心部を押圧して配置した気相成長装置とする。 (もっと読む)


【課題】腐食性が極めて強い不活性ガスや水素及び酸素ガス等の高密度プラズマに完全な耐腐食性を有するとともに、水分を全く放出せず、しかも、安定した整流状態のガス放出が得られる無数のガス放出穴を有するAl合金系材料のシャワープレートを提供すること。
【解決手段】Al合金系材料の薄板に、溝の深さが0.02〜0.5mmで、横巾が0.02〜10mmで、長さが3〜30mmで、無数の溝と溝との間隔が0.1乃至2mmの範囲内の角状溝を形成し、次いで、表面粗さが0.1s以内のAl保護膜を生成させたシートを積層してシャワープレートを形成した。 (もっと読む)


【課題】ヘテロ接合電界効果型トランジスタに用いられ得る窒化物系半導体層を含むエピタキシャルウエハの反りと結晶性を改善する。
【解決手段】ヘテロ接合電界効果型トランジスタに用いられ得る窒化物系半導体層を含むエピタキシャルウエハは、Si基板上においてAlNまたはAlONの第1バッファ層、Al組成比を段階的に減少させたAlGaNの第2バッファ層、第2バッファ層の上に配置されていてAlGa1−aN層/AlGa1−bN層の繰返し多層からなる第3バッファ層、GaNチャネル層、および電子供給層をこの順に含み、第2バッファ層の最上部のAl組成比xが0≦x≦0.3の範囲内にある。 (もっと読む)


【課題】 絶縁物からなる断熱層パターン上に良好な結晶性の光導波路を形成する。
【解決手段】 絶縁物からなる断熱層パターン2上に、断熱層パターン2から露出した基板1上の半導体結晶面1Aを核としたエピタキシャル成長により、埋込層3を形成する。断熱層パターン2上には、埋込層3が横方向にエピタキシャル成長し、これによって断熱層パターン2が埋め込まれる。断熱層パターン2上にエピタキシャル成長によって埋込層3が形成できるので、断熱層パターン2上に半導体結晶からなる光導波路10を形成することができる。 (もっと読む)


121 - 140 / 2,708