説明

Fターム[5F048BC03]の内容

MOSIC、バイポーラ・MOSIC (97,815) | ソース・ドレイン (8,322) | 非対称構造 (1,107)

Fターム[5F048BC03]に分類される特許

201 - 220 / 1,107


【課題】飽和電流までの電流を正確に検出できるトレンチゲート型半導体装置を提供する。
【解決手段】本発明のトレンチゲート型半導体装置は、主IGBT領域とセンスIGBT領域とにそれぞれチャネルを形成したアクティブセルと、チャネルを形成していないフローティングセルとを交互に配置し、主IGBT領域とセンスIGBT領域のアクティブセルの幅とフローティングセルの幅との比を所定の値に設定して主IGBT領域とセンスIGBT領域とが同様な飽和電流特性になるように制御した。 (もっと読む)


【課題】Si混晶層における選択成長用マスクの開口率の違いによりエピタキシャル成長が不均一となることを防止すると共に、半導体素子のキャリア移動度を向上できるようにする。
【解決手段】半導体装置は、半導体基板100の上部に形成された素子分離膜101と、素子分離膜に囲まれてなる素子活性領域102と、該素子活性領域102に形成され正孔をキャリアとするチャンネル領域100aとを有するP型MIS−FET200Pと、素子分離膜における素子活性領域102の周辺部に形成された複数のダミー活性領域105とを備えている。複数のダミー活性領域105のうち、正孔の移動方向と対向する位置に形成されたダミー活性領域のみをシリコンとゲルマニウムとを含むSiGe付きダミー活性領域106としている。 (もっと読む)


【課題】低オン電圧と低スイッチング損失とを両立することができる絶縁ゲート型半導体装置を提供する。
【解決手段】間引き型のIGBT素子において、ダミーセルのP型のフロート層18にN型のホールストッパー層19を設ける。また、このホールストッパー層19により分割された第1の層18aをエミッタ電極21に接地する。これにより、コレクタ電極24からフロート層18を介してゲート電極17に到達する経路に形成される帰還容量の中に溜まる電荷はほとんど無くなるため、スイッチング損失を低減できる。さらに、P型のフロート層18に設けられたN型のホールストッパー層19が電位の壁となるので、半導体基板10からフロート層18を介してエミッタ電極21にホールが抜けてしまうことを抑制することができる。このため、半導体基板10の抵抗が下がり、IGBT素子のオン電圧を下げることができる。 (もっと読む)


【課題】素子分離領域が低濃度拡散領域におけるゲート電極近傍の部分より浅い場合に半導体装置の平面寸法の大型化を抑制しつつ素子分離をより確実に行う。
【解決手段】半導体装置100は、第1導電型の不純物領域(N型ウェル領域51)と、第2導電型の低濃度拡散領域(P型オフセット拡散領域3)を有する複数のMOSトランジスタ(高圧PチャネルMOSトランジスタ11)と、素子分離領域6を有する。低濃度拡散領域は、素子分離領域6に接する第1部分3aは素子分離領域6と同じ深さであるか又はそれよりも浅く、第1部分3aよりもゲート電極1側の第2部分3bは素子分離領域6よりも深い。更に、第1導電型であり、不純物領域よりも不純物濃度が高く、素子分離領域6の底面と、素子分離領域6に隣接する低濃度拡散領域の各々とに接しているチャネルストッパー領域(N型チャネルストッパー領域9)を有する。 (もっと読む)


【課題】 LDMOSトランジスタにおいて、オン抵抗とのトレードオフ関係で最適化されたオフ耐圧を低下させることなく、チャネル長を短くすることによって飽和電流を増加させる。
【解決手段】 チャネルとなる低濃度ボディ領域10と素子分離膜4の間かつゲート酸化膜8の直下に選択的に低濃度ボディ領域10と逆の極性で濃度が高いショートチャネル領域12を設け、ボディ領域10のゲート酸化膜8直下部分のみを高濃度ソース領域7側に後退させた形状を実現する。 (もっと読む)


【課題】トンネルFETの閾値ばらつきの抑制をはかる。
【解決手段】Si1-x Gex (0<x≦1)の第1の半導体層13上にゲート絶縁膜21を介して形成されたゲート電極22と、Geを主成分とする第2の半導体と金属との化合物で形成されたソース電極24と、第1の半導体と金属との化合物で形成されたドレイン電極25と、ソース電極24と第1の半導体層13との間に形成されたSi薄膜26とを具備した半導体装置であって、ゲート電極22に対しソース電極24のゲート側端部とドレイン電極25のゲート側端部とは非対称の位置関係にあり、ドレイン電極25のゲート側の端部の方がソース電極24のゲート側の端部よりも、ゲート電極22の端部からゲート外側方向に遠く離れている。 (もっと読む)


【課題】横方向二重拡散MOSトランジスタ(LDMOS)の特性を悪化させることがなく、回路素子サイズの増大や各素子の製造時のばらつきの影響を抑えることができる、半導体素子の保護回路を提供する。
【解決手段】LDMOS110のバックゲートの出力をトリガーとして用い、LDMOSのドレインに接続される出力端子120に印加されるESDサージを、直列に接続された高耐圧MOS140及び低耐圧MOS142を経て接地端子122に流す。 (もっと読む)


【課題】リングゲート型MOSトランジスタ間の領域だけでなく、リング内の領域においてもディッシング現象の発生を抑止する。
【解決手段】半導体装置1は、基板10と、基板10上に形成されたリング形状のゲート電極21を有するトランジスタ20bと、ゲート電極21の外側に配置され、ゲート電極21と同層に設けられる複数の外部ダミーパターン40と、ゲート電極21の内側に配置され、ゲート電極21と同層に設けられる少なくとも1つの内部ダミーパターン41とを備える。 (もっと読む)


【課題】占有面積が小さく、所望の耐圧と熱破壊の防止を両立した保護トランジスタを提供する。
【解決手段】ゲート長方向の一方の側でゲート直下の領域に隣接しているゲート・ドレイン間領域REgdが、ゲート幅方向に互いに隣接する領域として、第1領域REgd1と第2領域REgd2とを有する。第1領域は、ドレイン耐圧が相対的に大きく、第2領域は、ドレイン電極(ドレインコンタクト部に設けられているシリサイド層10D)からの距離が平面視で第1領域より遠く、ドレイン耐圧が相対的に小さい。このため、耐圧が低いゲート・ドレイン間領域REgd2の加熱部分Aからドレインコンタクト部が遠いが、面積は小さく(または拡大しない)構造となっている。 (もっと読む)


【課題】 LDD領域の長さを精度良く調整可能で、高周波動作に適用できる非対称な横方向二重拡散型MISFETを提供する。
【解決手段】 第1導電型のウェル1の上方にゲート絶縁膜3を介してゲート電極5を形成する工程、ウェル1に第2導電型の不純物イオン注入によりドレイン領域7を形成する工程、ウェル1の上方にゲート電極5が形成されるゲート電極領域とドレイン領域7を少なくとも覆い、ゲート電極領域とドレイン領域の間が開口したマスクパターン層を形成する工程、マスクパターン層をマスクとして自己整合的に、マスクパターン層で覆われていない領域に第2導電型の不純物イオン注入によりドレイン領域より低濃度のLDD拡散領域6を形成する工程、及び、ウェル1のゲート電極5を挟んでドレイン領域7の反対側の領域に第2導電型の不純物イオン注入によりLDD拡散領域より高濃度のソース領域を形成する工程を有する。 (もっと読む)


【課題】消費電力の増加を招くことなくオフの状態を実現することのできる半導体装置を提供する。
【解決手段】ゲートに電圧が印加されていない状態でオン状態であるパワー素子と、パワー素子のゲートに第1の電圧を印加するためのスイッチング用の電界効果トランジスタと、パワー素子のゲートに第1の電圧より低い電圧を印加するためのスイッチング用の電界効果トランジスタと、を有し、上記スイッチング用の電界効果トランジスタはオフ電流が小さい半導体装置である。 (もっと読む)


【課題】インパクトイオン化MISFETに関して、微細素子において二つの入力によりAND型論理素子動作することを可能とし、素子バラツキを低減することを可能とし、消費電力を低減することを可能とする半導体装置を提供する。
【解決手段】第1導電型または真性である半導体領域の表面上に形成された二つの独立した第一および第二のゲート電極への両者への入力により反転層が形成された場合に、インパクトイオン化によるスイッチング動作が可能となることを特徴とする、半導体装置である。 (もっと読む)


【課題】注入マスクの低減が図られる半導体装置の製造方法と、そのような半導体装置を提供する。
【解決手段】レジストマスク31と他のレジストマスクを注入マスクとして、NMOS領域RNにボロンを注入することにより、アクセストランジスタおよびドライブトランジスタのハロ領域となるp型不純物領域が形成される。さらに他のレジストマスクを注入マスクとして、PMOS領域RPにリンまたは砒素を注入することにより、ロードトランジスタのハロ領域となるn型不純物領域が形成される。 (もっと読む)


【課題】表面上に素子をより高密度に実装する。
【解決手段】第1のトレンチと第2のトレンチとの間の位置において、エピタキシャル層の表面から基板へと下方に延在するドーパントのウェルは、エピタキシャル層の背景ドーピング濃度とは異なるドーピング濃度を有し、エピタキシャル層の残りの部分と第1および第2の接合を形成する。第1の接合は、第1のトレンチの底部から基板に延在し、第2の接合は、第2のトレンチの底部から前記基板に延在する。ウェルおよび第1および第2のトレンチは分離構造を構成し、分離構造は、分離構造の一方側のエピタキシャル層に形成された第1の素子と分離構造の他方側のエピタキシャル層に形成された第2の素子とを電気的に分離する。分離構造による電気的分離は第1および第2のトレンチとPN接合とによってもたらされ、ウェルは第1の導電型の材料でドープされ、基板およびエピタキシャル層は、第1の導電型とは反対の第2の導電型の材料でドープされ、第1および第2の接合はPN接合である。 (もっと読む)


【課題】チップ面積を縮小しつつ、高信頼性を実現する半導体装置を提供する。
【解決手段】半導体装置は、第1、第2配線S1,S2を有する第1回路部210と、第3、第4配線S3、S4を有する第2回路部220と、それらの間に設けられ、第1回路部210から第2回路部220に向かう方向に直交する方向に沿って隣接する第1、第2トランジスタTR1、TR2を有する中間部230と、を備え、第1トランジスタTR1の一方の拡散層DA1の第1接続領CA1内の高濃度領域CAI1は第1配線S1に、他方の拡散層DB1は第3配線S3に接続される。第1接続領域CA1とゲートG01との距離は、第2接続領域CA2とゲートG02との距離よりも長い。第1トランジスタTR1の一方の拡散層DA1の第1接続領域CA1とゲートG01との間には、第1接続領域CA1よりも幅が狭い延在領域EA1が設けられる。 (もっと読む)


【課題】パワーMOSFETを備える半導体装置のコストの低減を図る。
【解決手段】半導体装置1では、P型の半導体基板2上に、N型の半導体層3が積層されている。そして、半導体装置1は、LDMOS領域5に、ボディ領域8、ドレインバッファ領域9、ソース領域11およびゲート電極14などからなるLDMOSFETを備えている。すなわち、半導体装置1は、LDMOSFETを備えながら、厚膜SOI基板ではなく、N型の半導体層3が直上に設けられたP型の半導体基板2を採用している。そして、フィールド絶縁膜13上に7つのフィールドプレート15が設けられ、そのフィールドプレート15の間隔がボディ領域8側(ソース領域11側)ほど小さくされている。 (もっと読む)


【課題】トレンチ型絶縁ゲート半導体素子と多結晶シリコンダイオードを同一チップ上に形成して性能を高める。
【解決手段】本発明では、半導体基板上の半導体層の主面に形成されたトレンチ型絶縁ゲート半導体素子のトレンチ溝の外側には、トレンチ溝に連なる多結晶シリコン層を形成する。また、トレンチ溝の外側には、前記トレンチ溝に連なる多結晶シリコン層とは別の多結晶シリコン層が形成され、この多結晶シリコン層には多結晶シリコンダイオードが形成され、そして、この多結晶シリコンダイオードが形成された多結晶シリコン層の膜厚が、前記トレンチ溝に連なる多結晶シリコン層の膜厚よりも薄くなるように形成することを特徴とする。 (もっと読む)


【課題】工数の増加を招くことなく、更には、特性劣化を抑止して高品質の製品を供給することができる半導体素子の製造方法を提供する。
【解決手段】画素2に形成されたトランジスタのゲート電極305〜307の周辺にイオン注入を行うことでソース領域及びドレイン領域として機能するn領域426、427を形成し、その後に、ブロック膜として機能する第1の絶縁膜35及び第2の絶縁膜36を成膜し、エッチバックによって第1の絶縁膜35及び第2の絶縁膜36をその一部としたゲート電極のサイドウォールを形成する。 (もっと読む)


【課題】SRAM回路の動作速度を向上させる。
【解決手段】駆動MISFETと転送MISFETとそれらの上部に形成された縦型MISFETとでメモリセルを構成したSRAMにおいて、周辺回路を構成するMISFET間の電気的接続を、メモリセルの縦型MISFET(SV、SV)よりも下部に形成されるプラグ28および中間導電層46、47で行うとともに、縦型MISFET(SV、SV)よりも上部に形成されるプラグ、第1および第2金属配線層を用いて行うことにより、配線の自由度を向上でき、高集積化できる。また、MISFET間の接続抵抗を低減でき、回路の動作スピードを向上できる。 (もっと読む)


【課題】簡易なプロセスで、高い埋め込み性を確保する必要のない半導体装置およびその製造方法を提供する。
【解決手段】本発明の半導体装置の製造方法では、まず支持基板SSと、埋め込み絶縁膜BOXと半導体層SLとがこの順で積層された構成を有する半導体基板SUBが準備される。半導体層SLの主表面に、導電部分を有する素子が完成される。上記素子を平面視において取り囲む溝DTRが、半導体層SLの主表面から埋め込み絶縁膜BOXに達するように形成される。上記素子上を覆うように、かつ溝DTR内に中空を形成するように素子上および溝DTR内に第1の絶縁膜(層間絶縁膜II)が形成される。上記第1の絶縁膜に素子の導電部分に達する孔であるコンタクトホールCHが形成される。 (もっと読む)


201 - 220 / 1,107