説明

Fターム[5F049NA03]の内容

受光素子−フォトダイオード・Tr (21,418) | 目的、効果 (2,854) | レスポンス向上(周波数特性向上) (298)

Fターム[5F049NA03]に分類される特許

1 - 20 / 298


【課題】大面積化を図りつつ、時間分解能をより一層向上することが可能な光検出装置を提供すること。
【解決手段】半導体光検出素子10は、ガイガーモードで動作する複数のアバランシェフォトダイオードAPDと、各アバランシェフォトダイオードAPDに対して直列に接続されるクエンチング抵抗R1と、クエンチング抵抗R1が並列に接続される信号線TLと、を含むフォトダイオードアレイPDAを一つのチャンネルとして、複数のチャンネルを有する。搭載基板20は、チャンネル毎に対応した複数の電極E9が主面20a側に配置されると共に、各チャンネルからの出力信号を処理する信号処理部SPが主面20b側に配置されている。半導体基板1Nには、チャンネル毎に、信号線TLと電気的に接続された貫通電極TEが形成されている。貫通電極TEと電極E9とがバンプ電極BEを介して電気的に接続されている。 (もっと読む)


【課題】
低暗電流で、高速かつ高利得な光通信用アバランシェフォトダイオード及びそれを用いた受信機を提供する。
【解決手段】
光吸収層4と増倍層7を有するアバランシェフォトダイオードにおいて、光吸収層4と増倍層7が結晶面に対して平行方向(基板1上方において水平方向)に空間的かつ電気的に分離して配置し、光吸収層4と増倍層7間を導電性配線により電気的に接続することで、増倍層7の薄膜化が可能となり、さらに光吸収層4と増倍層7は高品質の結晶から形成されるため、アバランシェフォトダイオードの低暗電流化、高速化かつ高利得化を図ることができる。 (もっと読む)


【課題】ナノワイヤセンサーの出力が微弱であっても高速で動作可能である。
【解決手段】非常に微細なナノワイヤ素子からなるナノワイヤセンサー素子4を含むナノワイヤセンサーの出力を、非常に微細なナノワイヤ素子からなるナノワイヤ増幅素子5およびナノワイヤ抵抗素子6,7を含むナノワイヤ回路で直接受ける。こうして、出力を増幅するためのナノワイヤ増幅素子5やナノワイヤセンサー素子4からナノワイヤ増幅素子5までの配線12が持つ寄生容量を非常に小さくして、出力が微弱なナノワイヤセンサー素子4を備えていても、電子デバイス1を高速に動作させる。 (もっと読む)


【課題】設計自由度を低下させることなく、感度の向上を図ることができる受光素子を提供する。
【解決手段】受光素子1は、入射光を表面プラズモンに変換する周期構造領域1aと、周期構造領域1aの外縁に沿うように配置され、表面プラズモンに応じて電荷を発生する光電変換領域1bと、周期構造領域1aの内側に位置するように配置され、表面プラズモンに応じて電荷を発生する光電変換領域1cと、を備える。 (もっと読む)


【課題】二色性フォトダイオードおよび二色性光検出のための方法を提供する。
【解決手段】広バンドギャップ接合は、第1光スペクトルを検出するよう動作可能な格子整合接合を含む。狭バンドギャップ接合は、広バンドギャップ接合に結合されており、かつ、フォトダイオード構造を含む。狭バンドギャップ接合は、第2光スペクトルを検出するよう動作可能である。 (もっと読む)


【課題】応答速度及び効率を向上させることができる裏面入射型半導体受光素子を得る。
【解決手段】n型InP基板1上に、n型InP層2、InGaAs光吸収層3、アンドープInP層4が順に設けられている。アンドープInP層4の一部にZnドープのp型不純物拡散領域5が設けられている。n型InP層2とp型不純物拡散領域5がInGaAs光吸収層3を介してpn接合する部分が、n型InP基板1の裏面から入射した入射光を受ける受光部9である。平面視で受光部9を囲うようにn型InP基板1の裏面に溝10が設けられている。 (もっと読む)


【課題】光電変換素子の静電破壊を防止することができる、光電変換基板、放射線検出器、放射線画像撮影装置、及び放射線検出器の製造方法を提供する。
【解決手段】基板1上に形成されたTFTスイッチ4及びセンサ部103の上面が平坦化層18により平坦化されており、当該平坦化層18の略全面に帯電防止機能を有する導電膜30が形成されている。導電膜30は、グランド配線32及びグランド接続端子34と一体的に形成されており、グランド接続端子34を介してグランドに接続可能に構成されている。また、光電変換基板60(導電膜30)の上には、シンチレータ70が形成されており、シンチレータ70は、光電変換基板60に近い方から非柱状部71及び柱状部72を備えている。導電膜30をグランド接続端子34を介してグランドに接続した状態で、光電変換基板60の表面に表面処理を施す。 (もっと読む)


【課題】光電変換素子の静電破壊を防止する共に、帯電防止膜を設けたことによる副作用を防止することができる、光電変換基板、放射線検出器、及び放射線画像撮影装置光電変換素子の静電破壊を防止する。
【解決手段】基板1上に形成されたTFTスイッチ4及びセンサ部103の上面が平坦化層18により平坦化されており、当該平坦化層18の略全面(本実施の形態では画素領域20Aの全面)に帯電防止機能を有する導電膜30が形成されている。導電膜30は、接続配線42により接続部44に接続されており、接続部44は、接続配線42を共通電極配線25を介してバイアス電源110またはグランドに接続するように構成されている。また、光電変換基板60(導電膜30)の上には、シンチレータ70が形成されており、シンチレータ70は、光電変換基板60に近い方から非柱状部71及び柱状部72を備えている。 (もっと読む)


【課題】 配線の長さだけに律則されることなく、インダクタンスおよびキャパシタンスを決定し、これによって半導体受光装置の特性を向上する。
【解決手段】 半導体受光装置は、出力側電極と基準電位側電極とを備える半導体受光素子と、前記出力側電極および前記基準電位側電極にそれぞれ接続された引出配線と、を備え、前記出力側電極に接続された前記引出配線の幅が、前記基準電位側電極に接続された引出配線の幅よりも小さいことを特徴とするものである。 (もっと読む)


【課題】本発明は、高光電変換効率、低暗電流性、高速応答性を示すと共に、高速で連続して製造した際にも製造ロッド間での応答速度のばらつきが小さい光電変換素子を提供することを目的とする。
【解決手段】導電性膜、光電変換材料を含む光電変換膜、および透明導電性膜をこの順で積層してなる光電変換素子であって、光電変換膜が固体からなる膜であり、該光電変換材料が、一般式(1)で表される化合物を含む、光電変換素子。
(もっと読む)


【課題】 従来のPD製造プロセスと同じ工程で大受光径PDの帯域を拡大して、光受信部の高速化を図る。
【解決手段】 受光デバイスは、半導体基板の上方に形成された第1導電型の第1半導体層、前記第1半導体層上の光吸収層、および前記光吸収層上の第2導電型の第2半導体層の積層構造を有する光検出素子と、前記半導体基板の上方で、前記光検出素子に接続されるインダクタと、前記光検出素子で生成された電流を前記インダクタを介して取り出す出力電極と、前記光検出素子にバイアス電極を印加するバイアス印加用電極と、前記インタダクタの金属配線と交差して、前記光検出素子と、前記出力電極又は前記バイアス印加用電極との間を電気的に接続する交差配線と、を含む。 (もっと読む)


【課題】Siベースのフォトニクスプラットフォーム上で、フォトニックデバイス、Ge導波路一体型光検出器、およびハイブリッドIII−V/Siレーザの共集積化のための方法を提供する。
【解決手段】パターン化したSi導波路構造を含むSiデバイスを備えたSiベースのフォトニクス基板を用意する工程、誘電体層、例えば、SiO層を、平坦化したSiベースのフォトニクス基板の上部に堆積する工程、適切なエッチング深さで溝を誘電体層にエッチング形成して、フォトニクス基板のパターン化したSi導波路構造を露出させる工程、露出した導波路を選択エッチングして、Ge成長用のテンプレートを作成し、薄いSi層をGe成長用のシード層として残す工程、意図的なGe過成長を伴って、シード層からGeを選択成長させる工程、Ge表面を平坦化し、100nm〜500nmの減少した厚さを持つGe層を残す工程を含む。 (もっと読む)


【課題】タンパク質半導体の導電型を容易に制御することができるタンパク質半導体の導電型の制御方法、これを利用したタンパク質半導体の製造方法およびpn接合の製造方法を提供する。
【解決手段】アミノ酸残基全体の電荷量を制御することによりタンパク質半導体の導電型を制御し、p型タンパク質半導体あるいはn型タンパク質半導体を製造し、p型タンパク質半導体とn型タンパク質半導体とを用いてpn接合を製造する。アミノ酸残基全体の電荷量の制御は、タンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を自身の性質と異なる性質を有するアミノ酸残基に置換したり、タンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を化学修飾したり、タンパク質の周りを囲む媒体の極性を制御したりすることにより行う。 (もっと読む)


【課題】受信感度特性を改善することができる光受信装置を得る。
【解決手段】受光素子1が電気信号を出力し、それを前置増幅器2が増幅する。前置増幅器2の出力に信号線路4,5が接続されている。信号線路4,5とGNDとの間に抵抗6及びキャパシタ7が直列に接続されている。この抵抗6及びキャパシタ7の直列回路を追加することにより、ピーキングが抑えられた周波数応答特性を得ることができる。この結果、受信感度特性を改善することができる。 (もっと読む)


【課題】反転型のアバランシェフォトダイオードにおいて、p型コンタクト層の抵抗を低減し、より広帯域な特性が実現できるようにする。
【解決手段】アンチモンを含むp型のIII−V族化合物半導体から構成されて基板101の上に形成されたp型コンタクト層102と、Sbを含むIII−V族化合物半導体から構成されてp型コンタクト層102の上に形成された光吸収層103とを備える。また、p型コンタクト層102は、炭素を不純物として導入することでp型とされている。 (もっと読む)


【課題】 波長域1800nm程度にまで受光感度を有し、微弱な光に対応して、暗電流を低くできる受光素子等を提供する。
【解決手段】 選択拡散によってpn接合15が形成され、受光層3は、第1の組成のInGa1−xAs3aと第2の組成のInGa1−yAs3bとが交互に2対以上積層されてなり、第1の組成のInGa1−xAs3aはその吸収端波長が1.8μm〜1.75μmの間にあり、かつ第2の組成のInGa1−yAs3bはそれより短く、InP窓層5と受光層3との間に、該InP窓層および受光層に接してInPに格子整合するIn0.53Ga0.47AsまたはInAl0.48As0.52の中間層4が位置することを特徴とする。 (もっと読む)


【課題】良好な周波数応答特性を得ることができる光モジュールを実現する。
【解決手段】リードピン1は、金属ステム2を貫通し、金属ステム2とは絶縁されている。電界吸収型光変調素子5は、金属ステム2上に設けられ、リードピン1の一端に接続されている。フレキシブル基板10は信号線路12,13を有する。信号線路12の一端はリードピン1の他端に接続されている。信号線路12の他端は信号線路13の一端に接続されている。リードピン1の金属ステム2を貫通する貫通部1aと信号線路13は、それぞれ信号線路12より小さいインピーダンスを持つ。 (もっと読む)


【課題】耐入力性を低下させることなく装荷型フォトダイオードの応答速度を向上させる。
【解決手段】下部クラッド層107,コア層106,上部クラッド層105は、対象とする光を吸収しない範囲のバンドギャップエネルギーの半導体から構成され、コア層106および上部クラッド層105の不純物導入量は、第1半導体層102と第2半導体層103との間への電圧印加により、光吸収層104が形成されている領域における一部のコア層106および上部クラッド層105が空乏化する範囲とされている。 (もっと読む)


【課題】本発明の実施形態は、閾値電圧のオフセットレベルを変化させることにより、チャタリングを抑制することが可能な受信回路を提供する。
【解決手段】実施形態に係る受信回路は、光信号を受信し、前記光信号に対応した光電流を出力する受光素子と、前記光電流を信号電圧に変換して出力する信号電圧生成部と、 前記信号電圧を第1の閾値もしくは第2の閾値と比較する比較器と、前記比較器に入力する基準電圧を出力する基準電圧生成部と、前記比較器の出力に基づいて、前記基準電圧を前記第1の閾値および前記第2の閾値のいずれかに切り替えるスイッチと、を備える。 (もっと読む)


【課題】本実施例における受光素子は、光吸収効率を向上させつつ、高周波数帯域においても十分な信号レベルを有する検出信号を供給すること、及び入力信号光の強度が高い高強度光入力に対応した出力動作を行うことを目的とする。
【解決手段】本実施例における受光素子は、信号光を伝播させるコアと、前記コアから、前記コアの延在方向より前記信号光を受光する第1導電型の第1半導体層と、前記第1半導体層が受光した前記信号光を吸収する吸収層と、前記第1導電型と反対の第2導電型を有する第2半導体層とを有する。 (もっと読む)


1 - 20 / 298