説明

Fターム[5F083EP68]の内容

半導体メモリ (164,393) | EPROM、EEPROMの構造 (21,423) | 拡散領域 (1,645) | ソース領域 (798) | LDS構造 (526)

Fターム[5F083EP68]に分類される特許

61 - 80 / 526


【課題】データの保持期間を長くする半導体装置又は半導体記憶装置を提供する。
【解決手段】一対の不純物領域を有する第1の半導体層152aと、第1の半導体層と同じ材料であり、第1の半導体層と離間する第2の半導体層152bと、第1、第2の半導体層の上に設けられた第1の絶縁層153と、第1の絶縁層153を介して第1の半導体層に重畳する第1の導電層154と、第1の絶縁層153を介して第1の導電層に重畳し、第1の半導体層と異なる材料である第3の半導体層156と、第1の導電層及び第3の半導体層に電気的に接続される第2の導電層157bと、第3の半導体層156に電気的に接続され、第2の導電層と同じ材料である第3の導電層157aと、第3の半導体層、第2の導電層、及び第3の導電層の上に設けられた第2の絶縁層158と、第2の絶縁層を介して第3の半導体層に重畳する第4の導電層159と、を含む。 (もっと読む)


【課題】下部電極、上部電極およびそれらの間の絶縁膜により構成される容量素子の下部電極および上部電極間の耐圧を向上させる。
【解決手段】上部電極TEならびに上部電極TEのそれぞれの側壁の側壁酸化膜9およびサイドウォール10と下部電極BEとの間にONO膜IFを連続的に形成し、また、上部電極TEの側壁に、側壁酸化膜9を介して真性半導体膜からなるサイドウォール10を形成することにより、下部電極BEおよび上部電極TE間にリーク電流が発生することを防ぐ。 (もっと読む)


【課題】スタック構造のゲート電極を有する不揮発性メモリの低電圧動作化・低消費電力化を実現しうる半導体装置の製造方法を提供する。
【解決手段】素子分離絶縁膜上に第1の導電膜を形成し、素子領域上に第1の絶縁膜を形成し、第1の絶縁膜上及び第1の導電膜が形成された素子分離絶縁膜上に第2の導電膜を形成し、第2の導電膜及び第1の導電膜をパターニングし、第2の導電膜により形成された第1の部分が素子領域上に位置し、第1の導電膜と第2の導電膜の積層膜により形成された第2の部分が素子分離絶縁膜上に位置するフローティングゲートを形成し、フローティングゲート上に第2の絶縁膜を形成し、第2の絶縁膜上にコントロールゲートを形成する。 (もっと読む)


【課題】不揮発性メモリを有する半導体装置の性能を向上させる。
【解決手段】スプリットゲート型の不揮発性メモリは、半導体基板1上に絶縁膜3を介して形成された制御ゲート電極CGと、半導体基板1上に電荷蓄積部を有する絶縁膜5を介して形成されたメモリゲート電極MGとを有しており、メモリゲート電極MGは、制御ゲート電極CGの側面22上に絶縁膜5を介してサイドウォールスペーサ状に形成されている。制御ゲート電極CGは、メモリゲート電極MGに絶縁膜5を介して隣接する側とは反対側の側面21の下部21aが突出し、また、メモリゲート電極MGに絶縁膜5を介して隣接する側の側面22の下部22aが後退している。メモリゲート電極MGは、制御ゲート電極CGに絶縁膜5を介して隣接する側の側面23の下部23aが突出している。 (もっと読む)


【課題】小型化が可能な不揮発性メモリを備えた半導体装置を提供する。
【解決手段】基板901上に画素と不揮発性メモリとを備え、不揮発性メモリは、基板901上に形成される半導体活性層と、半導体活性層上に形成される絶縁膜923と、絶縁膜923上に形成されるフローティングゲイト電極907と、フローティングゲイト電極907を酸化して得られる酸化膜908,915,922と、酸化膜908,915,922に接して形成されるコントロールゲイト電極929と、を備え、画素と不揮発性メモリとは、基板901上に一体形成される。 (もっと読む)


【課題】半導体装置の製造工程を増加させることなく絶縁破壊耐性に優れた信頼性に懸念のない、小さな占有面積で所期の容量を確保する容量密度の高いパスコンを備えた半導体装置を実現する。
【解決手段】パスコンについて、第1の容量絶縁膜が、記憶素子のトンネル絶縁膜と共に第1の絶縁膜23で形成され、下部電極である第1の電極26が、記憶素子の浮遊ゲート電極25と共にドープト・アモルファスシリコン膜24(結晶化されたもの)で形成され、第2の容量絶縁膜が、周辺回路の5Vのトランジスタのゲート絶縁膜と共に第2の絶縁膜33で形成され、上部電極である第2の電極37が、記憶素子の制御ゲート電極36及び周辺回路のトランジスタのゲート電極41と共に多結晶シリコン膜34で形成される。 (もっと読む)


【課題】不揮発性メモリを有する半導体装置の性能を向上させる。
【解決手段】スプリットゲート型の不揮発性メモリのメモリゲート電極MGとp型ウエルPW1との間および制御ゲート電極CGとメモリゲート電極MGとの間には、絶縁膜5が形成されている。この絶縁膜5のうち、メモリゲート電極MGの下面と半導体基板1の上面との間の部分は、酸化シリコン膜9a,9bと酸化シリコン膜9a,9bに挟まれた窒化シリコン膜10aとを有している。絶縁膜5のうち、制御ゲート電極CGの側面とメモリゲート電極MGの側面との間の部分は、酸化シリコン膜6aからなり、窒化シリコン膜10aを有していない。 (もっと読む)


【課題】不揮発性メモリを有する半導体装置の性能を向上させる。
【解決手段】スプリットゲート型の不揮発性メモリのメモリゲート電極MGとp型ウエルPW1との間および制御ゲート電極CGとメモリゲート電極MGとの間には、絶縁膜5が形成されている。この絶縁膜5のうち、メモリゲート電極MGの下面と半導体基板1の上面との間の部分は、酸化シリコン膜6a,6cと酸化シリコン膜6a,6cに挟まれた窒化シリコン膜6bとを有している。絶縁膜5のうち、制御ゲート電極CGの側面とメモリゲート電極MGの側面との間の部分は、酸化シリコン膜6a,6cと酸化シリコン膜6a,6cに挟まれた空洞CAVとを有し、窒化シリコン膜6bを有していない。 (もっと読む)


【課題】隣接セルとの容量を抑制することが可能な半導体記憶装置およびその製造方法を提供する。
【解決手段】本実施形態の半導体記憶装置は、第1の方向および前記第1の方向と直交する第2の方向に配置される複数のメモリセルトランジスタを備える。前記メモリセルトランジスタのそれぞれは、半導体基板上に形成される第1の絶縁膜と、前記第1の絶縁膜上に形成される浮遊ゲート電極と、前記浮遊ゲート電極上に形成される第2の絶縁膜と、前記第2の絶縁膜上に形成される制御ゲート電極と、を有する。前記第1および第2の方向に隣接する2つの前記メモリセルトランジスタの前記浮遊ゲート電極は、前記隣接する方向の側面に括れた領域を有する。 (もっと読む)


【課題】回路サイズを減少させることを可能にする。
【解決手段】素子分離領域102によって分離された、隣接する第1導電型の第1半導体領域101aおよび第2導電型の第2半導体領域101cと、第1半導体領域101a上に設けられた不揮発性メモリセルトランジスタ10と、第2半導体領域101c上に設けられ、第1半導体領域101aに設けられた第1ドレイン領域10bと電気的に接続されたゲート電極20C2とを有するパストランジスタ20と、第1半導体領域101aに設けられ第1半導体領域に基板バイアスを印加する第1電極8と、第2半導体領域101cに設けられ第2半導体領域に基板バイアスを印加する第2電極9と、を備えている。 (もっと読む)


【課題】半導体基板の結晶性の悪化を招くことなく、素子分離トレンチの幅を小さくできる半導体装置の製造方法を提供する。
【解決手段】マスク用窒化膜51およびパッド酸化膜52からなるハードマスクを用いて、シリコン基板2がエッチングされることにより、素子分離トレンチ21が形成される。素子分離トレンチ21の内面に熱酸化法によりライナー酸化膜22が形成される。続いて、半導体基板2を窒素雰囲気中に配置して、半導体基板2が熱処理される。熱処理後に、エッチングにより、ライナー酸化膜22が薄膜化される。そして、HDP−CVD法により、絶縁物23が素子分離トレンチ21内に埋め込まれる。 (もっと読む)


【課題】サイドウォール間に層間絶縁膜を埋め込むときに埋め込み不良の発生を防止できる半導体装置の製造方法を提供する。
【解決手段】シリコン基板2の表面上に、ゲート酸化膜6、ポリシリコン層(第1ゲート層)9、タングステンシリサイド層(第2ゲート層)10および絶縁層8が形成される。絶縁層8が所定のゲートパターンにエッチングされる。タングステンシリサイド層10が前記所定のゲートパターンにエッチングされる。タングステンシリサイド層10の側壁が後退される。この後、ポリシリコン層9が前記所定のゲートパターンにエッチングされる。ゲート酸化膜6が前記所定のゲートパターンにエッチングされる。 (もっと読む)


【課題】半導体基板上に形成されたFETのソース側のエクステンション領域の抵抗値を低減し、半導体装置の動作速度を向上することができる技術を提供する。
【解決手段】ゲート電極4dの側壁に、ゲート電極4dのゲート長方向の幅が異なる第1サイドウォール6wおよび第2サイドウォール6nをそれぞれ形成する。これにより、第1サイドウォール6wおよび第2サイドウォール6nの形状によって第1サイドウォール6wおよび第2サイドウォール6nの下部に自己整合的に形成されるエクステンション領域37、38の半導体基板SBの上面の幅をそれぞれ異なる長さで形成する。 (もっと読む)


【課題】半導体装置の製造方法において、半導体装置の小型化を図ること。
【解決手段】第1の領域IにフラッシュメモリセルFLを形成する工程と、第2の領域IIにキャパシタQの第1の電極11aを形成する工程と、第2の絶縁膜14として第1の酸化シリコン膜14a、窒化シリコン膜14b、及び第2の酸化シリコン膜14cをこの順に形成する工程と、第1の電極11aの一部領域CRにおける窒化シリコン膜14bと第2の酸化シリコン膜14cとを除去する工程と、第3の領域IIIHにおける第1の絶縁膜10と第2の絶縁膜14とをウエットエッチングする工程と、キャパシタQの第2の電極30aを形成する工程と、一部領域CRにおける第1の酸化シリコン膜14aをエッチングして除去する工程とを有する半導体装置の製造方法による。 (もっと読む)


【課題】選択ゲート電極の側壁にメモリゲート電極を有する不揮発性記憶装置を微細化することができる技術を提供する。
【解決手段】選択ゲート電極CGをダミーパターンの側壁にサイドウォール形状で形成することで、メモリゲート電極MGが選択ゲート電極CGの両壁に形成されなくなり、フォトマスクの位置ずれを考慮する必要がなくなる。また、選択ゲート電極CGをサイドウォール状に形成することで、選択ゲート電極CGのゲート長が縮小しても、選択ゲート電極CGを構成する導電膜の膜厚により精度よく制御することを可能とする。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】ワイドギャップ半導体、例えば酸化物半導体を含むメモリセルを用いて構成された半導体装置であって、メモリセルに書き込み用のトランジスタ、読み出し用のトランジスタおよび選択用のトランジスタを備えた半導体装置とする。ワイドギャップ半導体を用いることで、メモリセルを構成するトランジスタのオフ電流を十分に小さくすることができ、長期間にわたって情報を保持することが可能な半導体装置を提供することができる。 (もっと読む)


【課題】高耐圧MISFETを含む半導体装置の信頼性向上を図ることができる技術を提供する。
【解決手段】高耐圧MISFETQ4のゲート絶縁膜GOX4を、酸化シリコン膜と窒化シリコン膜という異なる種類の膜から形成する。具体的に、高耐圧MISFETQ4では、ゲート絶縁膜GOX4を、酸化シリコン膜PREOX1と、この酸化シリコン膜PREOX1上に形成された酸化シリコン膜OX1と、酸化シリコン膜OX1上に形成された窒化シリコン膜SN1と、窒化シリコン膜SN1上に形成された酸化シリコン膜OX2から形成している。 (もっと読む)


【課題】不揮発性メモリと容量素子を有し、性能を向上させる半導体装置を提供する。
【解決手段】スプリットゲート型の不揮発性メモリのメモリゲート電極MG6nとp型ウエルPW1との間および制御ゲート電極CG4nとメモリゲート電極MG6nとの間には、内部に電荷蓄積層5bを有する絶縁膜5が形成されている。この絶縁膜5は、酸化シリコン膜5aと、その上に形成された窒化シリコン膜5bと、その上に形成された酸化シリコン膜5cと、その上に形成されかつ酸化シリコン膜5cよりも薄い絶縁膜5dとの積層膜からなる。この絶縁膜5dは、ポリシリコンからなるメモリゲート電極MG6nに接している。絶縁膜5dは、Hf,Zr,Al,Ta,Laのうちの少なくとも1種を含む金属化合物により形成されているため、フェルミピニングを生じることができ、誘電率が高い。 (もっと読む)


【課題】多層配線構造を使って、キャパシタンスが大きく、かつキャパシタンス値が安定なキャパシタ素子を半導体基板上に集積化する。
【解決手段】多層配線構造18は、少なくとも第1層目の層間絶縁膜16と、第1層目の層間絶縁膜中に埋設された第1配線層と、を含み、第1配線層は、第1の電源に接続され前記第1の層間絶縁膜中に埋設された第1の配線パタ―ン15C1と、第2の電源に接続され前記第1の層間絶縁膜中に埋設された第2の配線パタ―ン15C2と、を含み、第1の配線パタ―ンと前記第2の配線パタ―ンとは容量結合して第1のキャパシタを形成し、第1の配線パタ―ンは積層配線パタ―ン13C上に形成されて、前記第4の電極パターン13Gと容量結合して第2のキャパシタを形成し、第4の電極パターンは第2の配線パタ―ンに電気的に接続されている。 (もっと読む)


【課題】電磁波又は光が照射されても広義のリーク電流が増大せず、書き込み状態及び消去状態の安定した判別を可能とする。
【解決手段】電磁波シールド性能及び遮光性能を持つ層30及び31のどちらにも半導体層60の領域面積よりも大きい領域面積を持たせ、且つこの層30及び31を、半導体層60の上下を挟み込むように設けることで、電磁波及び光が半導体層60に侵入することを防ぐことができる。この結果、広義のリーク電流が格段に低減され、書き込み状態及び消去状態の判別を安定して行うことができる。 (もっと読む)


61 - 80 / 526