説明

Fターム[5F101BE05]の内容

不揮発性半導体メモリ (42,765) | 周辺技術 (5,862) | 書込回路、書込方法 (1,648)

Fターム[5F101BE05]に分類される特許

21 - 40 / 1,648


【課題】歩留まりや信頼性の低下を招くことなく、隣接セルのフローティング・ゲート間の結合容量を小さくすることができ、隣接セルの書き込み情報の影響を小さくした状態でフローティング・ゲートの電位を制御することが可能なNAND型フラッシュメモリを提供する。
【解決手段】一導電型の半導体材料層表面のチャネル領域上方に第2の絶縁膜12を介して形成されたゲート電極部と、ゲート電極部の上方に前記ゲート電極部と一体形成されたキャパシタ電極部と含むフローティング・ゲート13と、キャパシタ電極部の側面を囲むように第1の絶縁膜12を介して形成されたコントロールゲート10となる第1の電極と、を有する。 (もっと読む)


【課題】消去動作の際、充分な量の正孔を生成させて消去特性を確保することができる3次元不揮発性メモリ素子及びその製造方法を提供する。
【解決手段】基板から突出されたチャンネル膜と、チャンネル膜に沿って積層された複数のメモリセルと、チャンネル膜の一側端と繋がれたソースラインと、チャンネル膜の他側端と繋がれたビットラインと、チャンネル膜の一側端とソースラインとの間に介在されて、Pタイプの不純物がドープされた第1ジャンクションと、チャンネル膜の他側端と前記ビットラインとの間に介在されて、Nタイプの不純物がドープされた第2ジャンクションと、を含む。 (もっと読む)


【課題】半導体装置(不揮発性メモリを有する半導体装置)の特性を向上させる。
【解決手段】本発明の半導体装置は、制御ゲート電極CGと半導体基板との間に形成された絶縁膜3と、メモリゲート電極MGと半導体基板との間および制御ゲート電極CGとメモリゲート電極MGとの間に形成された絶縁膜5であって、その内部に電荷蓄積部を有する絶縁膜5と、を有する。この絶縁膜5は、第1膜5Aと、第1膜5A上に配置された電荷蓄積部となる第2膜5Nと、第2膜5N上に配置された第3膜5Bと、を有し、第3膜5Bは、制御ゲート電極CGとメモリゲート電極MGとの間に位置するサイドウォール膜5sと、メモリゲート電極MGと半導体基板との間に位置するデポ膜5dとを有する。かかる構成によれば、絶縁膜5の角部における距離D1を大きくすることができ、電界集中を緩和できる。 (もっと読む)


【課題】酸素欠損の発生を抑制する。
【解決手段】ガリウム(Ga)若しくはスズ(Sn)の一部又は全部の代わりにゲルマニウム(Ge)を用いて酸化物半導体膜を構成する。ゲルマニウム(Ge)原子は、酸素(Ge)原子との結合の少なくとも一つの結合エネルギーがガリウム(Ga)又はスズ(Sn)の場合よりも高い。このため、ゲルマニウム(Ge)を用いて構成される酸化物半導体結晶において、酸素欠損が発生しにくい。このことから、ゲルマニウム(Ge)を用いて酸化物半導体膜を構成することにより、酸素欠損の発生の抑制を図る。 (もっと読む)


【課題】酸化物半導体を含み、高速動作が可能なトランジスタを提供する。または、該トランジスタを含む信頼性の高い半導体装置を提供する。
【解決手段】下地絶縁層の溝に埋め込まれた電極層上に、一対の低抵抗領域及びチャネル形成領域を含む酸化物半導体層を設ける。チャネル形成領域は、サイドウォールを側壁に有するゲート電極層と重なる位置に形成される。溝は、深い領域と浅い領域を有し、サイドウォールは、浅い領域と重なり、配線との接続は、深い領域と重なる。 (もっと読む)


【課題】読出動作の精度を向上させた不揮発性半導体記憶装置を提供する。
【解決手段】メモリストリングは、半導体基板の上方に設けられ、複数のメモリセルを含む。制御回路は、複数のメモリセルのうち、選択メモリセルに保持されたデータを読み出す読出動作を実行する。メモリストリングは、半導体層、電荷蓄積層、及び導電層を有する。半導体層は、半導体基板に対して垂直方向に延びメモリセルのボディとして機能する。電荷蓄積層は、半導体層の側面に設けられ、電荷を蓄積可能とされる。導電層は、半導体層と共に電荷蓄積層を挟むよう設けられメモリセルのゲートとして機能する。制御回路は、読出動作の実行前に、選択メモリセル及び非選択メモリセルを導通状態としてメモリストリングの一端から他端へと電流を流すリフレッシュ動作を実行する。 (もっと読む)


【課題】ノーマリーオフの電気特性を有し、オン電流の高い、酸化物半導体膜を用いたトランジスタを提供する。また、該トランジスタを用いた高速動作が可能な半導体装置を提供する。
【解決手段】下地絶縁膜と、下地絶縁膜上に設けられた酸化物半導体膜と、酸化物半導体膜上に設けられたゲート絶縁膜と、ゲート絶縁膜を介して酸化物半導体膜と重畳して設けられたゲート電極と、少なくともゲート電極を覆って設けられた、開口部を有する層間絶縁膜と、層間絶縁膜上に設けられ、開口部を介して酸化物半導体膜と接する配線と、を有し、少なくとも酸化物半導体膜と配線とが接する領域の、下地絶縁膜および酸化物半導体膜の間に、絶縁膜および絶縁膜上に設けられたバッファ層を有する半導体装置である。 (もっと読む)


【課題】微細な構造であっても高い電気特性を有するトランジスタを歩留まりよく提供する。該トランジスタを含む半導体装置においても、高性能化、高信頼性化、及び高生産化を達成する。
【解決手段】酸化物半導体層と電気的に接続するソース電極層及びドレイン電極層を、酸化物半導体層上のゲート絶縁層及び絶縁層の開口を埋め込むように設ける。ソース電極層を設けるための開口とドレイン電極層を設けるための開口は、それぞれ異なるマスクを用いた個別のエッチング処理によって形成される。これにより、ソース電極層(またはドレイン電極層)と酸化物半導体層が接する領域と、ゲート電極層との距離を十分に縮小することができる。また、酸化物半導体層の下に第1の電極層および第2の電極層を設けてコンタクト抵抗の低減を図る。 (もっと読む)


【課題】向上された信頼性を有する不揮発性メモリ装置のプログラム方法が提供される。
【解決手段】本発明のプログラム方法は、第1メモリセルトランジスターの閾値電圧がプログラム状態から移動する傾向を判別する段階と、判別結果に応答して、複数の検証電圧の中で第1検証電圧を選択する段階と、第1メモリセルトランジスターの閾値電圧が変化するように第1メモリセルトランジスターをプログラムする段階と、で構成される。プログラムする段階は第1メモリセルトランジスターの閾値電圧が十分に変化されたかを第1検証電圧を利用して検証する段階を含む。判別する段階は第1メモリセルトランジスターの閾値電圧の第1範囲からの変化を判別する段階を含む。 (もっと読む)


【課題】安定した高速動作を実現しつつ、製造工程も簡素化することが可能な論理回路を提供すること。
【解決手段】この論理回路1は、バイアス電源とグラウンドとの間で直列に接続され、それぞれのゲート端子に入力電圧が印加される第1及び第2のFET2A,2Bを備える論理回路であって、第1及び第2のFET2A,2BのうちのFET2Aは、ゲート端子が接続されるゲート電極膜17と、半導体材料からなるチャネル層12と、ゲート電極膜17とチャネル層12との間に配置され、電荷を蓄積及び放出する電荷蓄積構造を含む電荷蓄積層16と、を有する。 (もっと読む)


【課題】面内方向での膜厚の均一性に優れ、電荷保持特性に優れた窒化シリコン膜の成膜方法、及び窒化シリコン膜を備えた不揮発性記憶装置の製造方法を提供する。
【解決手段】半導体基板上に第2の窒化シリコン膜を形成する工程と、第2の窒化シリコン膜上に第2の窒化シリコン膜よりも光学吸収係数が大きくかつ光学吸収係数kが0.60〜1.26の第1の窒化シリコン膜を、ステップ成膜法により形成する工程と、を有する窒化シリコン膜の成膜方法。 (もっと読む)


【課題】トランジスタ、ダイオード等の半導体用途に好適な材料を提供する。
【解決手段】ジルコニウムを含ませた酸化物半導体材料は結晶化しやすい材料とすることができ、成膜直後において、結晶構造を有する酸化物半導体膜を形成することができる。従って、酸化物半導体膜の成膜後の加熱処理を省略することができるため、量産に適したプロセスである。具体的には、少なくともインジウムと亜鉛を含む酸化物半導体材料に、4族元素の一つであるジルコニウムを含ませる。少なくともインジウムと亜鉛を含む酸化物半導体材料にジルコニウムを含ませた酸化物半導体材料膜(InZrZnO膜)を提供する。 (もっと読む)


【課題】良好な電気特性を維持しつつ、微細化を達成した半導体装置を提供する。また、信頼性の高い半導体装置を提供する。
【解決手段】ゲート電極層をマスクとした不純物の導入処理によって自己整合的にチャネル形成領域と一対の低抵抗領域とが形成される酸化物半導体層を有し、ゲート電極層を挟んで設けられる一対の配線層が低抵抗領域と電気的に接続し、配線層が形成される領域の下部に低抵抗領域と接する電極層が設けられている半導体装置である。 (もっと読む)


【課題】バンドギャップが大きく、且つ結合エネルギーを安定な状態にする酸化物半導体膜を提供する。また、バンドギャップが大きく、且つ結合エネルギーを安定な状態にする酸化物半導体膜を具備する半導体装置を提供する。
【解決手段】インジウム、ランタン、亜鉛及び酸素を有する結晶構造の酸化物半導体膜とする。また、当該結晶構造において、ランタンは酸素が6配位した構造とし、インジウムは酸素が5配位した構造とする。酸化物半導体膜の結晶構造中にランタンを用いることで、インジウム、ガリウム、亜鉛及び酸素を有する結晶構造の酸化物半導体膜よりもバンドギャップが大きく、結合エネルギーを大きくした酸化物半導体膜とすることができる。また、該酸化物半導体膜を用いた半導体装置の特性を向上させることができる。 (もっと読む)


【課題】トランジスタのオン特性を向上させて、半導体装置の高速応答、高速駆動を実現する際に、信頼性の高い構成を提供する。
【解決手段】酸化物半導体層、第1の導電層及び第2の導電層の積層によって構成されるソース電極層又はドレイン電極層、ゲート絶縁層、及びゲート電極層が順に積層されたコプレナー型のトランジスタにおいて、該ゲート電極層は、該第1の導電層と該ゲート絶縁層を介して重畳し、該第2の導電層と前記ゲート絶縁層を介して非重畳とする。 (もっと読む)


【課題】クリティカル・ディメンションの変動に鈍感であり且つ高速なメモリプログラミング方法等を提供する。
【解決手段】メモリの複数のメモリセルの夫々は、ウェルと、ソース及びドレイン領域と、記憶レイヤと、ゲートとを有する。メモリセルはマトリクス状である。同じ列ドレイン領域は同じビットラインへ接続し、同じ行ゲートは同じワードラインへ接続し、同じ列ソース領域は同じソースラインへ接続する。メモリは、いずれかのメモリセルへ電気的に接続されたワードラインへ第1の電圧を印加し、そのメモリセルへ電気的に接続されたビットラインへ少なくともプログラミング閾値だけ第1の電圧と異なる第2の電圧を印加し、そのメモリセルへ電気的に接続されたソースラインへ少なくともプログラミング閾値だけ第1の電圧と異なる第3の電圧を印加し、複数のメモリセルへ基板電圧を印加することによって、プログラミングされる。 (もっと読む)


【課題】インクジェットペンコントロールチップの既存の層を利用して製造できるEPROMを提供する。
【解決手段】EPROMセル70は、ソース領域及びドレイン領域を有する半導体基板52と、第1の金属層60と電気的に相互接続されている半導体ポリシリコン層56を含むフローティングゲート72と、第2の金属層64を含むコントロールゲートとを備えている。フローティングゲート72は、ソース領域及びドレイン領域に隣接して配置され、第1の誘電体層54によって半導体基板52から分離され、コントロールゲートの第2の金属層64は、第1の金属層60との間にある第2の誘電体層62を介して、第1の金属層60と容量結合されている。 (もっと読む)


【課題】微細化しても高いオン電流を得ることができるトランジスタを用いた、半導体装置。
【解決手段】トランジスタが、絶縁表面上の一対の第1導電膜と、一対の第1導電膜上の半導体膜と、一対の第1導電膜にそれぞれ接続されている一対の第2導電膜と、半導体膜上の絶縁膜と、絶縁膜上において、半導体膜と重なる位置に設けられた第3導電膜とを有する。また、半導体膜上における第3導電膜の端部と、一対の第2導電膜が設けられた領域とは、離隔している。 (もっと読む)


【課題】配線電極間の双方向の電流値、書き込み及び消去の電圧値、および記憶保持時間が制御容易なメモリ装置を提供する。
【解決手段】微結晶である第1の導電性微粒子を含む微結晶層22と、微結晶層22を挟むトンネル絶縁膜21、23とを有する第1の二重トンネル接合構造と、微結晶である第2の導電性微粒子を含む微結晶層26と、微結晶層26を挟むトンネル絶縁膜25、27とを有する第2の二重トンネル接合構造と、第1の二重トンネル接合構造と第2の二重トンネル接合構造との間に配置され、情報電荷を蓄積する電荷蓄積層と、第1の二重トンネル接合構造、電荷蓄積層、及び第2の二重トンネル接合構造を挟む第1、第2の導電層とを備える。第1の導電性微粒子の平均粒径は、第2の導電性微粒子の平均粒径と異なっている。 (もっと読む)


【課題】酸化物半導体を含み、高速動作が可能なトランジスタを提供する。または、該トランジスタを含む信頼性の高い半導体装置を提供する。
【解決手段】下地絶縁層中に埋め込まれ、上面の少なくとも一部が下地絶縁層から露出した電極層上に、一対の低抵抗領域及びチャネル形成領域を含む酸化物半導体層を設け、電極層において、または、酸化物半導体層の低抵抗領域であって電極層と重畳する領域において、酸化物半導体層の上層に設けられる配線層との電気的な接続を行うトランジスタを提供する。 (もっと読む)


21 - 40 / 1,648