説明

Fターム[5F102FA01]の内容

接合型電界効果トランジスタ (42,929) | 目的、効果 (2,241) | 高耐圧化 (602)

Fターム[5F102FA01]に分類される特許

21 - 40 / 602


【課題】ノーマリーオフ特性を具現すると共にゲートリーク電流を抑制する窒化物半導体素子及びその製造方法を提供する。
【解決手段】第1の窒化物層31とその材料より広いエネルギバンドギャップを有する材料を含む第2の窒化物層33とが異種接合され、接合界面寄りに2次元電子ガス(2DEG)チャネルが形成された窒化物半導体層30と、その上にオミック接触されたソース電極50と、これから離間して窒化物半導体30層上にオミック接触されたドレイン電極60と、ソース電極50とドレイン電極60との間の窒化物半導体層30上に、これらから離間して形成されたP型窒化物層40と、この上に形成されたN型窒化物層140と、ソース側の側壁が、P型窒化物層40及びN型窒化物層140のソース側の側壁と整列するようにN型窒化物層140上に接触させたゲート電極70とを含む。 (もっと読む)


【課題】ゲート領域近傍のチャネル部分の抵抗を低減することにより、従来よりも特性オン抵抗が低い炭化珪素半導体装置を提供する。
【解決手段】炭化珪素半導体装置は、基板11と、基板11上に設けられ、主表面13Aと、主表面13Aと交差する厚さ方向とを有する炭化珪素層4とを有している。炭化珪素層4は、チャネル層13と、ソース領域15と、ドレイン領域17と、ソース領域15とドレイン領域17との間において、厚さ方向に沿って主表面13Aからチャネル層13中に突き出るように延びるゲート領域16とを含んでいる。ゲート領域16の対向方向に沿った寸法は、主表面13Aから離れるにつれて小さくなっている。 (もっと読む)


【課題】高電圧動作時においても電流コラプス現象を十分に抑制し、高耐圧及び高出力を実現する信頼性の高い化合物半導体装置を得る。
【解決手段】HEMTは、化合物半導体層2と、開口を有し、化合物半導体層2上を覆う保護膜と、開口を埋め込み、化合物半導体層2上に乗り上げる形状のゲート電極7とを有しており、保護膜は、酸素非含有の下層絶縁膜5と、酸素含有の上層絶縁膜6との積層構造を有しており、開口は、下層絶縁膜5に形成された第1の開口5aと、上層絶縁膜6に形成された第1の開口5aよりも幅広の第2の開口6aとが連通してなる。 (もっと読む)


【課題】電極と化合物半導体層との界面に電極材料が到達することを抑止し、ゲート特性の劣化を防止した信頼性の高い高耐圧の化合物半導体装置を提供する。
【解決手段】化合物半導体積層構造2と、化合物半導体積層構造2上に形成され、貫通口6aを有するパッシベーション膜6と、貫通口6aを埋め込むようにパッシベーション膜6上に形成されたゲート電極7とを有しており、ゲート電極7は、相異なる結晶配列の結晶粒界101が形成されており、結晶粒界101の起点が貫通口6aから離間したパッシベーション膜6の平坦面上に位置する。 (もっと読む)


【課題】高電子移動度トランジスタ及びその製造方法を提供する。
【解決手段】高電子移動度トランジスタ(HEMT)及びその製造方法に係り、該高電子移動度トランジスタは、基板と、基板から離隔された位置に備わった高電子移動度トランジスタ積層物と、基板と高電子移動度トランジスタ積層物との間に位置した疑似絶縁層と、を含み、該疑似絶縁層は、異なる相の少なくとも2つの物質を含む。前記異なる相の少なくとも2つの物質は、固体物質と非固体物質とを含む。前記固体物質は、半導体物質であり、前記非固体物質は、空気である。 (もっと読む)


【課題】動作電圧の高電圧化を図るも、電極端における電界集中を緩和してデバイス特性の劣化を確実に抑止し、高耐圧及び高出力を実現する信頼性の高い化合物半導体装置を提供する。
【解決手段】HEMTは、SiC基板1上に、化合物半導体層2と、開口6bを有し、化合物半導体層2上を覆う、窒化珪素(SiN)の保護膜6と、開口6bを埋め込むように化合物半導体層2上に形成されたゲート電極7とを有しており、保護膜6は、その下層部分6aが開口6bの側面から張り出した張出部6cが形成されている。 (もっと読む)


【課題】化合物半導体積層構造上の絶縁膜に所期の微細な開口を形成するも、リーク電流を抑止した信頼性の高い高耐圧の化合物半導体装置を実現する。
【解決手段】化合物半導体積層構造2上にパッシベーション膜6を形成し、パッシベーション膜6の電極形成予定位置をドライエッチングにより薄化し、パッシベーション膜6の薄化された部位6aをウェットエッチングにより貫通して開口6bを形成し、この開口6bを電極材料で埋め込むように、パッシベーション膜6上にゲート電極7を形成する。 (もっと読む)


【課題】電流コラプスを抑制しながらノーマリオフ動作を実現することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】化合物半導体装置の一態様には、基板1と、基板1上方に形成された化合物半導体積層構造7と、化合物半導体積層構造上方に形成されたゲート電極11g、ソース電極11s及びドレイン電極11dと、が設けられている。化合物半導体積層構造7には、電子走行層3と、電子走行層3上方に形成された電子供給層5を含む窒化物半導体層と、が設けられている。窒化物半導体層の表面のIn組成は、平面視でゲート電極11gとソース電極11sとの間に位置する領域及びゲート電極11gとドレイン電極11dとの間に位置する領域において、ゲート電極11gの下方よりも低くなっている。 (もっと読む)


【課題】ゲートリーク電流が低減され、かつ、ノーマリーオフ動作する半導体装置を提供する。
【解決手段】基板11の上に形成された第1の半導体層12と、第1の半導体層12の上に形成された第2の半導体層13と、第2の半導体層13の上に形成された下部絶縁膜31と、下部絶縁膜31の上に、p型の導電性を有する酸化物により形成された酸化物膜33と、酸化物膜33の上に形成された上部絶縁膜34と、上部絶縁膜34の上に形成されたゲート電極41と、を有し、ゲート電極41の直下において、下部絶縁膜31の表面には凹部が形成されている半導体装置。 (もっと読む)


【課題】格子整合したバッファ層、及び高い平坦性を有する接合界面を得ることが可能な半導体装置を提供すること。
【解決手段】本発明は、n−GaNからなる基板10と、基板10上に設けられ、InAl1−xN(0.15≦x≦0.2)からなる第1バッファ層12と、第1バッファ層12上に設けられ、厚さ1nm以上10nm以下のAlNからなるスペーサ層14と、スペーサ層14上に設けられ、GaNからなるチャネル層16と、チャネル層16上に設けられ、窒化物半導体からなる電子供給層18と、を具備する半導体装置である。 (もっと読む)


【課題】第1の極性を有する第1の化合物半導体層と共にこれと逆極性(第2の極性)の第2の化合物半導体層を用い、化合物半導体層の再成長をすることなく、第2の極性に対応した導電型の含有量が実効的に、容易且つ確実に所期に制御された、複雑な動作を可能とする信頼性の高い高耐圧の化合物半導体装置を得る。
【解決手段】第1の極性を有する電子走行層2bと、電子走行層2bの上方に形成された第2の極性を有するp型キャップ層2eと、p型キャップ層2e上に形成された第1の極性を有するn型キャップ層2fとを有しており、n型キャップ層2fは、厚みの異なる部位2fa,2fbを有する。 (もっと読む)


【課題】ドレイン−ソース間のリーク電流が少なく、かつ、ノーマリーオフの半導体装置を提供する。
【解決手段】基板11の上に形成された不純物元素を含む第1の半導体層13と、第1の半導体層13の上に形成された第2の半導体層16と、第2の半導体層16の上に形成された第3の半導体層17と、第3の半導体層17の上に形成されたゲート電極21、ソース電極22及びドレイン電極23と、を有し、第2の半導体層16において、ゲート電極21の直下には、第1の半導体層13と接し、第1の半導体層13に含まれる不純物元素が拡散している不純物拡散領域15が形成されており、不純物元素は、不純物拡散領域がp型となる元素であることを特徴とする半導体装置。 (もっと読む)


【課題】絶縁耐圧が高く、オン抵抗を増加させることなく、ノーマリーオフとなる半導体装置を提供する。
【解決手段】基板11の上に形成された第1の半導体層13と、前記第1の半導体層の上に形成された第2の半導体層14と、前記第2の半導体層の上に形成された第3の半導体層15と、前記第3の半導体層の上に形成されたゲート電極21と、前記第2の半導体層に接して形成されたソース電極22及びドレイン電極23と、を有し、前記第3の半導体層には、半導体材料にp型不純物元素がドープされており、前記第3の半導体層は、前記ゲート電極の端部より、前記ドレイン電極が設けられている側に張出している張出領域を有していることを特徴とする半導体装置。 (もっと読む)


【課題】リーク特性のばらつき幅を低減可能な、窒化物電子デバイスを作製する方法を提供する。
【解決手段】テトラメチルアンモニウムヒドロキシドを含む第1溶液を用いた処理を行って半導体積層53bに第1処理面65fを処理装置10dで形成する。第1溶液による処理温度は、摂氏50度以上摂氏100度以下である。第1溶液の濃度は5パーセント以上であり、50パーセント以下である。第1処理工程に引き続き第2処理工程を行う。第2処理工程では、テトラメチルアンモニウムヒドロキシド処理の後に、フッ化水素酸及び過酸化水素を含む第2溶液を用いた処理を半導体積層53bに行って半導体積層53bに第2処理面65gを処理装置10eで形成する。第2処理工程の後において、半導体積層53bの処理面65gのドナー性不純物の濃度は5×1017cm−3以下である。 (もっと読む)


【課題】耐圧をより向上することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】化合物半導体装置の一態様には、基板1と、基板1の上方に形成された化合物半導体積層構造8と、基板1と化合物半導体積層構造8との間に形成された非晶質性絶縁膜2と、が設けられている。 (もっと読む)


【課題】半導体層と電極との間に絶縁膜を介するMIS構造を採用するも、オン抵抗の上昇及び閾値の変動を抑止し、信頼性の高い半導体装置を得る。
【解決手段】AlGaN/GaN・HEMTは、化合物半導体積層構造2と、化合物半導体積層構造2の表面と接触する挿入金属層4と、挿入金属層4上に形成されたゲート絶縁膜7と、挿入金属層4の上方でゲート絶縁膜7を介して形成されたゲート電極8とを含み構成される。 (もっと読む)


【課題】窒化物半導体を用いた電界効果トランジスタのしきい値電圧がより容易に制御できるようにする。
【解決手段】基板101の上に形成されたGaNからなる緩衝層102と、緩衝層102の上に形成されたAlGaNからなる障壁層103と、障壁層103の上に形成されたゲート電極104とを備える。また、障壁層103の上にゲート電極104を挟んでゲート電極104とは離間して形成されたソース電極105およびドレイン電極106を備える。加えて、障壁層103とゲート電極104との間に形成されたInAlNからなるキャップ層107を備える。 (もっと読む)


【課題】耐圧が高く、かつ、リーク電流が効果的に低減された窒化物半導体素子及びその製造方法を提供する。
【解決手段】ベース基板210と、ベース基板の上方に形成されたバッファ層280と、バッファ層280上に形成された活性層290と、活性層の上方に形成された少なくとも2つの電極292および294とを備え、バッファ層280は格子定数の異なる複数の窒化物半導体層を含む複合層を1層以上有し、複合層の少なくとも1層は、複数の窒化物半導体層のうち格子定数が最も大きい窒化物半導体層のキャリア領域に予め定められた濃度の炭素原子及び予め定められた濃度の酸素原子が意図的にドープされている窒化物半導体素子。 (もっと読む)


【課題】内蔵する環流ダイオードの順方向電圧が低く、高耐圧で、低オン抵抗の、ノーマリオフ型の窒化物半導体装置を提供する。
【解決手段】窒化物半導体装置は、基板1、第1の窒化物半導体層3、第2の窒化物半導体層4、及び第2の窒化物半導体層上4に設けられた、ソース電極5、ドレイン電極6、第1のゲート電極9、ショットキー電極10、第2のゲート電極12、を備える。第2の窒化物半導体層4と第1の窒化物半導体層3との界面には、2次元電子ガスが形成される。第1のゲート電極9はノーマリオフ型FET20のゲート電極であり、ソース電極5とドレイン電極6との間に設けられる。ショットキー電極10は、第1のゲート電極9とドレイン電極6との間に設けられる。第2のゲート電極12はノーマリオン型FET21のゲート電極であり、ショットキー電極10とドレイン電極6との間に設けられる。 (もっと読む)


【課題】窒化物半導体層をチャネルとして用いたトランジスタにおいて、オン抵抗を低くしつつ、閾値電圧を高くする。
【解決手段】キャップ層400と障壁層300の界面、及びチャネル層200とバッファ層100の界面には圧縮歪が生じており、障壁層300とチャネル層200の界面には引張り歪が生じている。このため、キャップ層400と障壁層300の界面、並びにチャネル層200とバッファ層100の界面において、負の電荷が正の電荷よりも多くなっており、障壁層300とチャネル層200の界面において、正の電荷が負の電荷よりも多くなっている。チャネル層200は、第1層、第2層、及び第3層の積層構造を有している。第2層は、第1層及び第3層よりも電子親和力が大きい。 (もっと読む)


21 - 40 / 602