説明

Fターム[5F102FA01]の内容

接合型電界効果トランジスタ (42,929) | 目的、効果 (2,241) | 高耐圧化 (602)

Fターム[5F102FA01]に分類される特許

41 - 60 / 602


【課題】窒化物半導体層をチャネルとして用いたトランジスタにおいて、オン抵抗を低くしつつ、閾値電圧を高くする。
【解決手段】キャップ層400と障壁層300の界面、及びチャネル層200とバッファ層100の界面には圧縮歪が生じており、障壁層300とチャネル層200の界面には引張り歪が生じている。このため、キャップ層400と障壁層300の界面、並びにチャネル層200とバッファ層100の界面において、負の電荷が正の電荷よりも多くなっており、障壁層300とチャネル層200の界面において、正の電荷が負の電荷よりも多くなっている。チャネル層200は、第1層、第2層、及び第3層の積層構造を有している。第2層は、第1層及び第3層よりも電子親和力が大きい。 (もっと読む)


【課題】ドレイン配線電極に起因する電流コラプス現象への影響が抑制され、且つ耐圧が向上された窒化物半導体装置を提供する。
【解決手段】窒化物半導体からなるデバイス層と、デバイス層上に互いに離間して配置されたソース電極及びドレイン電極と、ソース電極とドレイン電極間でデバイス層上に配置されたゲート電極と、デバイス層上に配置された層間絶縁膜と、ドレイン電極とゲート電極間において層間絶縁膜を介してデバイス層と対向して配置され、ドレイン電極と電気的に接続されたドレイン配線電極と、ゲート電極とドレイン電極間においてデバイス層上に層間絶縁膜を介してデバイス層と対向して配置されたドレイン電極に比べて低電位側のフィールドプレートとを備え、ドレイン配線電極下方の層間絶縁膜の膜厚が、フィールドプレート下方の層間絶縁膜の膜厚よりも厚い。 (もっと読む)


【課題】電極端部への電界集中を抑えるとともに、ゲート電極の変形や、ゲート−フィールドプレート間に生じる容量による特性劣化を抑える。
【解決手段】半導体装置において、第1の基板と、第1の基板表面に形成された素子領域と、素子領域と接続され、第1の基板上に形成されたゲート電極、ソース電極及びドレイン電極と、第1の基板と、第1の面で積層される第2の基板と、第2の基板を貫通し、電極上に配置されるビアホールと、ビアホール内に形成され、電極と接続される金属層と、第2の基板に設けられ、ゲート電極、ソース電極及びドレイン電極のいずれかと接続されるフィールドプレート電極と、を備える。 (もっと読む)


【課題】ゲート電極に臨む領域の半導体層へのダメージ層の形成を抑制して、ノーマリオフ動作を実現することができるヘテロ接合電界効果型トランジスタを備える半導体装置およびその製造方法を提供する。
【解決手段】チャネル層23とヘテロ接合を形成するバリア層24のうち、ゲート電極29に臨む領域を除く他の領域に、バリア層24の伝導帯から、チャネル層23とバリア層24とのヘテロ界面のバンド不連続量ΔEcと、バリア層24に発生する分極によるバリア層24のゲート電極29側とヘテロ界面側とのエネルギー差ΔEpとを足し合わせたエネルギー(ΔEc+ΔEp)までのエネルギー深さのバンドギャップ中に準位を形成する不純物をドーピングして、不純物ドーピング領域26を形成する。 (もっと読む)


【課題】高電子移動度トランジスタにおいて、ゲート部のドレイン側端部における電界集中を緩和する。
【解決手段】高電子移動度トランジスタ10は、導電体部23と第1抵抗部R1と第2抵抗部R2を備えている。導電体部23は、ドレイン電極21とゲート部26の間に設けられている。第1抵抗部R1は、一端がドレイン電極21に電気的に接続されており、他端が導電体部23に電気的に接続されている。第2抵抗部R2は、一端がソース電極28に電気的に接続されており、他端が導電体部23に電気的に接続されている。 (もっと読む)


【課題】高濃度接合リークが発生することを抑制する。
【解決手段】第2ゲート領域8が備えられるトレンチ6の先端部においてJFET構造が形成されないように凹部13を形成する構造において、凹部13の底面と側面との境界部となるコーナ部にp型層16を形成するようにする。これにより、p型層16とp+型の第1ゲート領域3もしくは第2ゲート領域8とが同じ導電型となり、これらの間において高濃度接合が構成されないようにできる。したがって、ドレイン電位が第1ゲート領域3上に表出して、ゲート−ドレイン間耐圧を低下させてしまうことを防止でき、高濃度接合リーク(ゲートリークやドレインリーク)が発生することを防止することができる。 (もっと読む)


【課題】ゲートリーク電流が少なく、かつ電流コラプスが抑えられた半導体装置の提供。
【解決手段】第1の態様においては、窒化物系半導体で形成された半導体層110と、半導体層上に開口を有して設けられ、タンタル酸窒化物を含む第1絶縁膜120と、第1絶縁膜の開口において半導体層上に積層された第2絶縁膜130と、第2絶縁膜上に設けられたゲート電極140と、を備える半導体装置を提供する。ここで、第2絶縁膜は、第1絶縁膜より絶縁性が高い絶縁膜により構成される。 (もっと読む)


【課題】トランジスタのゲートへの電流を防ぐ。
【解決手段】ノーマリーオン型の第1トランジスタと、ドレインが、第1トランジスタのソースと接続され、第1トランジスタとカスコード接続されたノーマリーオフ型の第2トランジスタと、第2トランジスタのソースと第1トランジスタのゲートとの間に設けられた、第2トランジスタのソースから第1トランジスタのゲートへと流れる電流を抑制する第1電流抑制部とを備えるトランジスタ回路を提供する。 (もっと読む)


【課題】ゲート絶縁膜の破壊を防止すると共に、信頼性を向上させた、ノーマリオフの双方向動作が可能な窒化物系半導体装置を提供する。
【解決手段】窒化物系半導体素子10は、第1MOSFET部30及び第2MOSFET部31を備えており、第1ゲート電極26と第2ゲート電極27との間に設けられた第1SBD金属電極28及び第2SBD金属電極29がAlGaN層20とショットキー接合されている。第1SBD金属電極28と第1電極24とが接続されており、電気的に短絡していると共に、第2SBD金属電極29と第2電極25とが接続されており、電気的に短絡している。 (もっと読む)


【課題】ゲート電極によるチャネルのポテンシャル制御性を大幅に向上させ、信頼性の高い所期の高耐圧及び高出力を得ることのできる化合物半導体装置を実現する。
【解決手段】AlGaN/GaN・HEMTは、Si基板1と、Si基板1の上方に形成された電子走行層2bと、電子走行層2bの上方に形成された電子供給層2cと、電子供給層2cの上方に形成されたソース電極4、ドレイン電極5及びゲート電極6とを含み構成されており、電子走行層2cは、平面視でソース電極4とドレイン電極5とを結ぶ方向と交差する方向に並ぶ複数の段差、例えば第1の段差2ca、第2の段差2cb、第3の段差2ccを有する。 (もっと読む)


【課題】ドレイン電極配線によって形成されるフィールドプレートに起因する電流コラプス現象への影響が抑制された窒化物半導体装置を提供する。
【解決手段】窒化物半導体からなる機能層20と、機能層20上に離間して配置されたソース電極3及びドレイン電極4と、ソース電極3とドレイン電極4間で機能層20上に配置されたゲート電極5と、機能層20上に配置された層間絶縁膜7と、層間絶縁膜7上に配置され、ドレイン電極4と電気的に接続されたドレイン電極配線41とを備える窒化物半導体装置であって、ゲート電極5とドレイン電極4間において、層間絶縁膜7を介してドレイン電極配線41が機能層20と対向する領域を有さない。 (もっと読む)


【課題】化合物半導体層全体の膜厚を抑制しつつ、半導体素子の高い性能と信頼性を両立することのできる化合物半導体基板を提供する。
【解決手段】シリコン単結晶の基板12と、基板上に形成される化合物半導体の第1の半導体層16と、第1の半導体層上に形成され、第1の半導体層よりもバンドギャップエネルギーの大きい、化合物半導体の障壁層18と、障壁層上に形成され、障壁層よりもバンドギャップエネルギーの小さい化合物半導体の第2の半導体層20と、第2の半導体層上に形成され、第2の半導体層よりもバンドギャップエネルギーの大きい化合物半導体の第3の半導体層22とを有することを特徴とする化合物半導体基板。 (もっと読む)


【課題】斜めイオン注入を行わなくても、外周耐圧構造を形成でき、かつ、高いドレイン耐圧が得られるようにする。
【解決手段】凹部16の底面に形成されたP型領域18と、トレンチ13内に配置されたP+型層15、および、凹部17の底面に形成されたP型領域19とによってP型リサーフ層20を構成することで電界緩和構造とする。P型リサーフ層20がトランジスタセル領域R1の周囲を囲むような構成とされることから、外周耐圧構造領域R2に延びる電界をさらにトランジスタセル領域R1の外周側に延ばすことが可能となり、ブレークダウン位置を凹部17の底面におけるN-型ドリフト層2にシフトできるため、電界緩和を行うことが可能となる。したがって、ドレイン耐圧を向上させることが可能となる。 (もっと読む)


【課題】ゲート電極へのリーク電流を大幅に低減できるGaN系化合物半導体装置を提供する。
【解決手段】このGaN系HFETによれば、ゲート電極をなすTiN膜の抵抗率(Ω・μm)を24.7(Ω・μm)とした。このように、ゲート電極のショットキー電極層としてのTiN膜の抵抗率が10Ωμm以上であることによって、ゲート電極をなす金属材料TiNの抵抗率(ゲートメタル抵抗率)が10Ωμm未満である場合に比べて、ゲートリーク電流を著しく低減できる。 (もっと読む)


【課題】オン抵抗の増加を抑制でき、さらにオフ時のゲートリーク電流およびドレインリーク電流を低減できるノーマリオフ型の窒化物半導体装置およびその製造方法を提供する。
【解決手段】上層の窒化物半導体層15を下層の窒化物半導体層14の格子定数より大きい材料とし、ゲート電極とソース電極およびドレイン電極との間の上層の窒化物半導体層表面15を、窒素ガスのプラズマ処理を施す。プラズマ処理を行うことにより、プラズマ処理なしの窒化物半導体層の積層構造により形成される2次元電子ガス層のキャリア濃度より、高いキャリア濃度の2次元電子ガス層16が形成され、特性の優れたノーマリオフ型の窒化物半導体装置となる。 (もっと読む)


【課題】シリコン基板直上の窒化アルミニウム層の平坦性が低いことに起因する信頼性の低下が抑制された半導体装置を提供する。
【解決手段】シリコン基板10と、シリコン基板上に配置された、不純物としてシリコンがドープされた領域を有する窒化アルミニウム層20と、窒化アルミニウム層上に配置された、複数の窒化物半導体膜が積層された構造のバッファ層30と、バッファ層上に配置された、窒化物半導体からなる半導体機能層40とを備える。 (もっと読む)


【課題】窒化物半導体層上の層間絶縁膜の開口部が、電界の集中が緩和される形状に安定して精度良く形成された窒化物半導体装置及びその製造方法を提供する。
【解決手段】窒化物半導体層30と、窒化物半導体層30上に配置された第1の絶縁膜41と、第1の絶縁膜41上に配置された第2の絶縁膜42と、窒化物半導体層30上に互いに離間して配置された第1及び第2の主電極51,52と、第1及び第2の主電極51,52間で第2の絶縁膜42上に配置され、第1及び第2の絶縁膜に設けられた開口部を介して窒化物半導体層に接続するフィールドプレート60とを備える窒化物半導体装置であって、開口部において、窒化物半導体層30の表面と第1の絶縁膜41の側面とのなす第1の傾斜角が、窒化物半導体層30の表面と第2の絶縁膜42の側面を延長した線とのなす第2の傾斜角よりも小さく形成されている。 (もっと読む)


【課題】電流コラプスを十分に抑制することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】基板1と、基板1上方に形成された化合物半導体積層構造2と、化合物半導体積層構造2上方に形成されたゲート電極3、及び平面視でゲート電極3を間に挟む2個のオーミック電極4a及び4bと、が設けられている。更に、ゲート電極3上方に形成され、ゲート電極3並びにオーミック電極4a及び4bから絶縁分離されたフィールドプレート6が設けられている。フィールドプレート6のオーミック電極4a及び4bを互いに結ぶ方向における少なくとも一方の端部は、平面視で、オーミック電極4a及び4bとゲート電極3との間に位置する。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、各ソース電極12の長手方向の長さL2が各ドレイン電極11の長手方向の長さL1よりも短く、ソース電極12の長手方向の両端12A,12Bがドレイン電極11の長手方向の両端11A,11Bよりも長手方向外方へ突出していない構成により、ソース電極12の端12A,12Bからドレイン電極11の端11A,11Bへ向かって電子流が集中することを回避できる。 (もっと読む)


【課題】ヘテロ接合を有する半導体装置において、リーク電流と電流コラプスのトレードオフ関係を打破し、リーク電流と電流コラプスの双方を抑制すること。
【解決手段】半導体装置1の電子走行層4は、炭素が導入されている高抵抗領域4aを含んでいる。電子走行層4と電子供給層5のヘテロ接合5aと平行な断面において、高抵抗領域4aの炭素の濃度分布が、ドレイン電極12とソース電極18の少なくともいずれか一方の下方で相対的に濃く、ドレイン電極12と絶縁ゲート部16の間で相対的に薄くなるような断面が存在している。 (もっと読む)


41 - 60 / 602