説明

Fターム[5F102FA01]の内容

接合型電界効果トランジスタ (42,929) | 目的、効果 (2,241) | 高耐圧化 (602)

Fターム[5F102FA01]に分類される特許

161 - 180 / 602


【課題】円弧状の部分を有する電極と先端部分を有する電極での円弧状の部分と先端部分との間で流れる電流密度を均一化するために、電極の先端部分における電流集中を緩和させ、電流集中に起因する半導体装置の破壊を防止できる半導体装置を提供する。
【解決手段】半導体装置は、基板と、基板上に形成され、かつヘテロ接合に基づくキャリア走行層を有する化合物半導体層と、化合物半導体層上に形成される第1の主電極14と、化合物半導体層上において平面的に見て第1の主電極14を包囲するように形成され、かつ直線領域と円弧領域とを有する第2の主電極15と、化合物半導体層上において第1の主電極及び第2の主電極に対向するように形成された制御電極16と、を備え、第1の主電極及び第2の主電極の間に電流が流れる半導体装置であって、第1の主電極と第2の主電極の円弧領域との間に電流制限部19を設けた。 (もっと読む)


【課題】2DEGをチャンネルとして用いる半導体装置において、不純物イオンの侵入による悪影響を排除する。
【解決手段】第1の半導体層である電子走行層11上に、第2の半導体層である電子供給層12が形成されている。これらの界面(ヘテロ接合界面)における電子走行層11側に、2次元電子ガス(2DEG)層13が形成される。ソース電極14からドレイン電極15の間の2DEG層13が形成された領域がこの半導体装置10におけるチャンネル領域となる。このチャンネル領域上の絶縁層17上において、第1のフィールドプレート18が形成されている。すなわち、第1のフィールドプレート18は、2つの主電極のうちの一方から他方に達するチャンネル領域上を覆うように形成されている。 (もっと読む)


【課題】高耐圧化した窒化物半導体装置を提供する。
【解決手段】窒化物半導体装置200は、シリコン基板201上に形成されたバッファ層220と、バッファ層220上に形成された第1の窒化物超格子層204aと、第1の窒化物超格子層204a上に形成された活性領域層230とを備え、バッファ層220は、不純物がドープされた第2の窒化物超格子層204bと、第2の窒化物超格子層204b上に形成され、不純物がドープされた第1の窒化物半導体層205と、第1の窒化物半導体層205上に形成され、第1の窒化物半導体層205よりもAl組成及び不純物の濃度が高い第2の窒化物半導体層206とを有する。 (もっと読む)


【課題】FETを提供する。
【解決手段】FETは、基板と、基板上に配置されたバッファ層と、バッファ層上に配置されたチャネル層と、チャネル層上に配置された障壁層とを含む。ソース、ゲート及びドレイン電極は障壁層上に配置されて長手方向に延伸する。チャネル及び障壁層の一部分は長手方向に延伸するメサ部を形成し、ソース及びドレイン電極がメサ部の縁を超えて延伸する。ゲート電極はメサ部の縁側壁に沿って延伸する。導電性ソース相互接続部は障壁層上に配置されソース電極に電気的に接続された第一の端部を有する。第一の誘電体層はバッファ層及びソース相互接続部上に配置される。ゲートビアは第一の誘電体層に形成される。導電性ゲートノードがバッファ層に沿って延伸して前記メサ部の側壁に沿って延伸するゲート電極の一部分に電気的に接続する。ゲートパッドはメサ部に隣接する第一の誘電体層上に配置される。 (もっと読む)


【課題】電界効果トランジスタにおいて、フィールドプレート終端での高電界の集中を緩和し、もって高耐圧半導体装置として利用可能とする。
【解決手段】本電界効果トランジスタ30は、GaN系エピタキシャル基板32の電子走行層上に、ゲート電極38を挟んで配置されたソース電極34及びドレイン電極36を備え、ゲート電極38及びソース電極34はドレイン電極36を囲み、ソース電極34の上部に、ゲート電極38の上方を通過してドレイン電極36側に庇状に突き出したフィールドプレート170が形成され、GaN系エピタキシャル基板32の表面層とフィールドプレート170との間に、誘電体膜46が形成され、誘電体膜46は、フィールドプレート170の直下領域においてフィールドプレート終端面と面一状態となるように切れ込み、その下端からドレイン電極36に接続するようにドレイン電極36に向かって延びている。 (もっと読む)


【課題】オン抵抗が低く耐圧および信頼性が高い電界効果トランジスタを提供する。
【解決手段】基板1上に形成されたキャリア走行層3と、前記キャリア走行層上に形成され前記キャリア走行層よりもバンドギャップエネルギーが高いキャリア供給層4a、4bと、前記キャリア供給層から前記キャリア走行層の表面または内部に到る深さまで形成されたリセス部5と、前記キャリア供給層上に形成されたドレイン電極11と、前記リセス部に形成され、前記ドレイン電極側のキャリア供給層と重畳するように延設したゲート電極7と、前記リセス部の底面と前記ゲート電極との間に形成された第1絶縁膜6と、前記ゲート電極と前記ドレイン電極側のキャリア供給層との間に形成され前記第1絶縁膜よりも誘電率が高い第2絶縁膜8aとを備える。 (もっと読む)


【課題】
しきい値電圧をより向上させることのできる、中間層とデバイス活性層の間にノーマリ
ーオフ作用をもつ窒化物半導体層を形成する。
【解決手段】
Si単結晶基板上に形成され窒化物半導体の積層構造からなる中間層と、中間層上に形成され、組成AlGa1−xN(0≦x≦0.05)、厚さ200nm以上2000nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の窒化物半導体からなる領域1と、領域1上に形成され、組成AlGa1−yN(0.1≦y≦1)、厚さ0.2nm以上100nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の窒化物半導体からなる領域2と、領域2上に形成される窒化物半導体のデバイス活性層からなる窒化物半導体基板。 (もっと読む)


【課題】ゲート電極のリーク電流の増大を抑制して、長期間にわたって安定した高電圧動作を実現する。
【解決手段】GaNからなる化合物半導体層100上に形成されたゲート電極103において、GaNからなる化合物半導体層100上でショットキー接合してなるNi層41と、Au、Cu及びAlからなる群から選択された1種の金属からなる低抵抗金属層42と、Ni層41と低抵抗金属層42との間に形成されたPd層44を設けるようにする。 (もっと読む)


【課題】ゲート電極とソース電極との間のゲート寄生容量成分Cgsを低減することができる半導体装置を提供する。
【解決手段】半導体基板11上に形成された動作層12と、この動作層12の表面上に、互いに離間して形成されたドレイン電極13およびソース電極14と、動作層12の表面上において、ドレイン電極13とソース電極14との間に形成されたゲート電極15と、動作層12の表面上において、ドレイン電極13とソース電極14との間に、ゲート電極15を覆うように形成された表面保護膜19と、表面保護膜19の表面上であって、少なくともゲート電極15のドレイン側端部上を含む位置に形成されたソースフィールドプレート電極20と、ソースフィールドプレート電極20に接続されるとともに、ソース電極14に電気的に接続され、これらの電極20、14のよりも狭い幅で表面保護膜19上に形成された複数の配線21を具備する。 (もっと読む)


【課題】電流コラプスが小さく且つ良好な高周波特性を有する電界効果トランジスタを実現できるようにする。
【解決手段】電界効果トランジスタは、基板101の上に形成された窒化物半導体積層体102と、ソース電極105、ドレイン電極106及びゲート電極107と、窒化物半導体積層体102の上に形成された絶縁膜110と、絶縁膜110の上に接して形成され、端部がゲート電極107とドレイン電極106との間に位置するフィールドプレート115とを備えている。絶縁膜110は、第1の膜111と、第1の膜111よりも絶縁耐圧が低い第2の膜112とを含み、ゲート電極117とドレイン電極116との間に形成された薄膜部110aを有している。フィールドプレート115は、薄膜部110aを覆い且つ開口部においてソース電極と接続されている。 (もっと読む)


【課題】ゲート電極のリーク電流の増大を抑制して、長期間にわたって安定した高電圧動作を実現する。
【解決手段】GaNからなる化合物半導体層100上に形成されたゲート電極102において、GaNからなる化合物半導体層100上でショットキー接合してなるTix1-xN層(0<x<1)43と、Tix1-xN層43の上方に形成され、Au、Cu及びAlからなる群から選択された1種の金属からなる低抵抗金属層42を設けるようにする。 (もっと読む)


【課題】電界効果トランジスタにおいて、フィールドプレート終端での高電界の集中を緩和し、もって高耐圧半導体装置として利用可能とする。
【解決手段】本電界効果トランジスタ30は、GaN系エピタキシャル基板32の電子走行層上に、ゲート電極38を挟んで配置されたソース電極34及びドレイン電極36を備え、ゲート電極38の上部に、ドレイン電極36側及びソース電極34側に庇状に突き出したフィールドプレート40が形成され、基板32の表面層とフィールドプレート40との間に誘電体膜46が形成され、誘電体膜46は、フィールドプレート40のドレイン電極36側及びソース電極34側の終端面と面一状態となるように切れ込み、ドレイン電極36側の下端からドレイン電極36に接続するようにドレイン電極36に向かって延びており、且つ、ソース電極34側の下端からソース電極34に接続するようにソース電極34に向かって延びている。 (もっと読む)


【課題】正孔の蓄積によるキンク現象の発生および耐圧の低下を、効果的に抑制できるようにする。
【解決手段】半絶縁性のInPからなる基板101と、基板101の上に形成されて、炭素(C)がp形の不純物として導入されたGaAsSbからなる正孔走行層102と、正孔走行層102の上に形成されたInGaAsからなるチャネル層103と、チャネル層103の上に形成された電子供給層104と、電子供給層104の上に形成された障壁層105とを備える。 (もっと読む)


【課題】MOS型デバイスのゲート絶縁膜の破壊を防止すると共に、信頼性を向上させた、窒化物系半導体装置を提供することを目的とする。
【解決手段】ドレイン電極26とゲート電極28との間に設けられたSBD金属電極30がAlGaN層20とショットキー接合されている。また、SBD金属電極30とソース電極24とが接続されており、電気的に短絡している。これにより、ゲート電極28にオフ信号が入ると、MOSFET部32がオフ状態となり、MOSFET部32のドレイン側の電圧がドレイン電極26の電圧値と近くなる。ドレイン電極26の電圧が上昇すると、SBD金属電極30の電圧値が、MOSFET部32のドレイン側の電圧値よりも低くなるため、SBD金属電極30によってMOSFET部32のドレイン側とドレイン電極26とが電気的に切断される。 (もっと読む)


【課題】耐圧が高いHFET(Heterojunction−FET)を提供する。
【解決手段】ヘテロ接合16aに生じる2次元電子ガスをチャネルとするHFET10であって、第1半導体領域16と、第1半導体領域16上で第1半導体領域16とヘテロ接合している第2半導体領域18と、第2半導体領域18上に形成されたソース電極20、ドレイン電極22及びゲート電極24と、第1半導体領域16と接しており、ソース電極20と導通しているp型の第3半導体領域14を有している。ゲート電極24とドレイン電極22の間の第2半導体領域18の上面のうちの、ゲート電極24に隣接する範囲の上面は、第1表面準位密度を有する第1領域40であり、第1領域40に隣接する範囲の上面は、第1表面準位密度より低い第2表面準位密度を有する第2領域42である。第3半導体領域14は、第2領域42の下側で第1半導体領域16に接している。 (もっと読む)


【課題】ゲート耐電圧が高くかつオン抵抗が低減されたノーマリオフ型GaN系FETを提供する。
【解決手段】ノーマリオフ型GaN系FETは、第1種GaN系半導体からなるチャネル層4と、このチャネル層上で互いに隔てて設けられた第2種GaN系半導体からなる一対の電子供給層5と、これら電子供給層の間でチャネル層を覆うゲート絶縁膜7と、チャネル層にオーミックコンタクトしているソース電極およびドレイン電極と、ゲート絶縁膜上に形成されたゲート電極とを備え、ゲート絶縁膜はチャネル層上に順次堆積された第1と第2の絶縁層を含み、第1絶縁層7aはSiの酸化物、窒化物および酸窒化物のいずれかからなりかつ5nm以下の厚さを有し、第2絶縁層7bは第1絶縁層に比べて大きなε×Eを有し、ここでεは誘電率を表し、Eは絶縁破壊電界を表している。 (もっと読む)


【課題】耐圧向上や短チャンネル効果の抑制を可能とする半導体装置およびその製造方法を提供することを目的とする。
【解決手段】本発明にかかる半導体装置は、半導体基板であるSiC基板1上に形成された、バッファ層2と、バッファ層2上に形成された、バッファ層2よりもバンドギャップが小さいチャネル層3と、チャネル層3上に形成された、チャネル層3よりもバンドギャップが大きいバリア層4と、バリア層4上に互いに離間して形成された、ソース、ドレイン電極7、8と、ソース、ドレイン電極7、8下から、バリア層4を通ってチャネル層3中にそれぞれ達する、不純物領域5とを備え、不純物領域5の下端は、バッファ層2に達しない。 (もっと読む)


【課題】主面をm面とするIII 族窒化物半導体で構成されたHFETにおいて、正のしきい値電圧を高めること。
【解決手段】HFET100は、凹凸加工されたa面サファイア基板101上に、m面を主面とするGaNからなるバッファ層102、ノンドープのGaNからなるチャネル層103、ノンドープのAlGaNからなる障壁層104、酸素ドープのn−AlGaNからなるキャリア供給層105を有している。キャリア供給層105は2つの領域に分離して形成されている。キャリア供給層105は、障壁層104上に選択的に再成長させて形成した層である。ゲート電極109にバイアスを印加しない状態では、ゲート電極109直下に2DEGが形成されないため、正のしきい値電圧を高めることができる。 (もっと読む)


【課題】室温(300K)以上において正孔濃度が1.0×1015cm‐3以上で、かつ、ドーパント原子濃度が1.0×1021cm‐3以下である実用的なp型ダイヤモンド半導体デバイスとその製造方法を提供すること。
【解決手段】単結晶ダイヤモンド基板1−1の上に形成された単結晶ダイヤモンド薄膜1−2の中には、二次元の正孔または電子チャンネル1−3が形成される。基板1−1の面方位と基板1−1の結晶軸「001」方向との成す角度をαs、ダイヤモンド薄膜1−2の面方位と単結晶ダイヤモンド薄膜1−2の結晶軸「001」方向との成す角度をαd、チャンネル1−3の面方位とダイヤモンド薄膜1−2の結晶軸「001」方向との成す角度をαcとする。単結晶ダイヤモンド薄膜1−2の表面上には、ソース電極1−4、ゲート電極1−5、ドレイン電極1−6が形成される。 (もっと読む)


【課題】Si基板の上に形成した窒化物半導体素子の生産性及び動作特性を向上させる。
【解決手段】窒化物半導体素子は、シリコン基板101の上に初期層102を介して形成された歪み抑制層110と、歪み抑制層の上に形成された動作層120とを備えている。歪み抑制層110は、第1のスペーサ層111と、第1のスペーサ層の上に接して形成された第2のスペーサ層112と、第2のスペーサ層の上に接して形成された超格子層113とを有している。第1のスペーサ層は、格子定数が第2のスペーサ層よりも大きい。超格子層は、第1の層113A及び第1の層よりも格子定数が小さい第2の層113Bが交互に積層されている。超格子層の平均の格子定数は、第1のスペーサ層の格子定数よりも小さく且つ第2のスペーサ層の格子定数よりも大きい。 (もっと読む)


161 - 180 / 602