説明

Fターム[5F102FA01]の内容

接合型電界効果トランジスタ (42,929) | 目的、効果 (2,241) | 高耐圧化 (602)

Fターム[5F102FA01]に分類される特許

61 - 80 / 602


【課題】電極メタルがSiN絶縁膜に拡散することを抑制でき、電流コラプスの抑制とリーク電流の低減とを両立できるGaN系半導体素子の製造方法を提供する。
【解決手段】このGaN系HFETの製造方法によれば、GaN系積層体5上に形成したSiN保護膜7を熱処理により改質してから、Ti/Al電極15,16をGaN系積層体5上に形成し、Ti/Al電極15,16を熱処理してオーミック電極としてのソース電極15,ドレイン電極16とする。SiN保護膜7を熱処理した後に、Ti/Al電極15,16を熱処理(オーミックアニール)し、オーミック電極としてソース電極15,ドレイン電極16を形成することによって、電極メタルがSiN保護膜7に拡散することを抑制できる。 (もっと読む)


【課題】高いスイッチング速度を有し、電圧降伏耐性を強化したネスト化複合ダイオードを提供する。
【解決手段】ネスト化複合ダイオードの種々の実現を、本明細書に開示する。1つの実現では、ネスト化複合ダイオードが、複合ダイオードに結合されたプライマリ・トランジスタを含む。複合ダイオードは、中間型トランジスタとカスコード接続された低電圧(LV)ダイオードを含み、中間型トランジスタは、LVダイオードよりは大きく、プライマリ・トランジスタよりは小さい降伏電圧を有する。1つの実現では、プライマリ・トランジスタはIII-V族トランジスタとすることができ、LVダイオードはIV族LVダイオードとすることができる。 (もっと読む)


【課題】高耐圧を確保でき、かつ大電流を流すことができるMOSトランジスタを備えた半導体装置を提供する。
【解決手段】P型拡散層15に起因してN型拡散層13に第1空乏層23が形成される。ゲート電極19にゲート電圧が印加されていない状態では、P型ポリシリコンからなるゲート電極19及びN型拡散層13の仕事関数差に起因してN型拡散層13に第2空乏層25が形成される。空乏層23,25によってソースコンタクト用拡散層9とドレインコンタクト用拡散層11が電気的に遮断される。ゲート電極19にゲート電圧が印加された状態では、第2空乏層25が消滅又は縮小することによってソースコンタクト用拡散層9とドレインコンタクト用拡散層11がN型拡散層13を介して電気的に導通する。 (もっと読む)


【課題】高耐圧なIII−窒化物デバイスを提供する。
【解決手段】半導体基板1、基板1上の活性層のスタックであって、それぞれの層はIII−窒化物材料を含むスタック2−5、スタック2−5上のゲート8、ソース9およびドレインコンタクト10、および基板1の裏側(活性層のスタックに接する側に対向する側)から基板1に接する活性層のスタックの下層まで基板中を延びるトレンチであって、トレンチはドレイン領域を完全に囲み、ドレインに向かうゲート領域の端と、ゲートに向かうドレイン領域の端との間に配置され、基板のドレイン領域は本質的に半導体材料から形成されるような幅を有するトレンチを含むIII−窒化物デバイス。 (もっと読む)


【課題】リーク電流を低減でき、かつ、良好な電流コラプス特性が得られる窒化物半導体装置を提供する。
【解決手段】Si基板1上に順に積層されたチャネルGaN層5およびそのチャネルGaN層5とヘテロ界面を形成するバリアAlGaN層6を含む窒化物半導体層を備える。上記バリアAlGaN層6は、炭素濃度を5×1017/cm以上とする。また、チャネルGaN層5は、炭素濃度を6×1016/cm未満とし、かつ、膜厚を500nm以上とする。 (もっと読む)


【課題】より高いしきい値電圧と電流コラプス改善を両立できる、ノーマリーオフ型の高耐圧デバイスに好適な窒化物半導体基板及びその製造方法を提供する。
【解決手段】基板1と、前記基板1の一主面上に形成されるバッファー層2と、前記バッファー層2上に形成される中間層3と、前記中間層3上に形成される電子走行層4と、前記電子走行層4上に形成される電子供給層5とを含む窒化物半導体基板10において、前記中間層3を厚さ200nm以上1500nm以下、炭素濃度5×1016atoms/cm3以上1×1018atoms/cm3以下のAlxGa1-xN(0.05≦x≦0.24)とし、前記電子走行層4が厚さ5nm以上200nm以下のAlyGa1-yN(0≦y≦0.04)とする。 (もっと読む)


【課題】高抵抗バッファ層の結晶品質の劣化を避けることができる窒化物半導体装置の製造方法を得る。
【解決手段】SiC基板1上に、III族原料として有機金属原料を用い、V族原料としてヒドラジン誘導体の有機化合物を用いたMOCVD法により、炭素濃度が1018cm−3以上に制御された窒化物半導体からなるAlN高抵抗バッファ層2を形成する。AlN高抵抗バッファ層2上に、AlN高抵抗バッファ層2よりも低い抵抗値を持つGaN電子走行層3とAl0.2Ga0.8N電子供給層4を形成する。 (もっと読む)


【課題】膜剥がれの要因となる有機材料を用いることなく、エレクトロマイグレーションの耐性と長期信頼性を向上できるパワーデバイスを提供する。
【解決手段】バリア層4(AlGaN)4上に形成された酸化シリコン(SiO2)からなる層間絶縁膜10と、層間絶縁膜10のソース電極5上に形成され、基板平面に対して略垂直な第1の側壁W1を有する第1コンタクトホール部10aと、第1コンタクトホール部10aの第1の側壁W1の上縁から上側に向かって徐々に広がるように層間絶縁膜10に形成され、基板平面に対して傾斜した第2の側壁W2を有する第2コンタクトホール部10bと、第1,第2コンタクトホール部10a,10b内および層間絶縁膜10上に形成された配線層12とを備える。上記配線層12は、第1コンタクトホール部10aにおいて第1の側壁W1の基板厚さ方向の寸法よりも膜厚が厚い。 (もっと読む)


【課題】絶縁破壊耐性に優れた化合物半導体積層構造を備えて基板の絶縁破壊の十分な抑止を実現し、ピンチオフ状態とする際にもリーク電流が極めて少ない信頼性の高い化合物半導体装置を実現する。
【解決手段】Si基板1上に形成された化合物半導体積層構造2は、その厚みが10μm以下であって、AlNからなる厚い第1のバッファ層を有しており、III族元素(Ga,Al)の総原子数のうち、Al原子の比率が50%以上とされ、換言すれば、V族元素のNとの化学結合(Ga−N,Al−N)の総数のうち、Al−Nが50%以上とされる。 (もっと読む)


【課題】 電流コラプスを抑制するとともに、高耐圧動作が可能な化合物半導体装置及びその製造方法を提供する。
【解決手段】 SiC基板10上に形成されたi−GaNバッファ層12と、i−GaNバッファ層12上に形成されたn−AlGaN電子供給層16と、n−AlGaN電子供給層16上に形成されたn−GaNキャップ層18と、n−GaNキャップ層18上に形成されたソース電極20及ドレイン電極22と、ソース電極20とドレイン電極22との間のn−GaNキャップ層18上に形成されたゲート電極26と、ソース電極20とドレイン電極22との間のn−GaNキャップ層18上に形成された第1の保護層24と、ゲート電極26とドレイン電極22との間の第1の保護層24に形成されたn−GaNキャップ層18に達する開口部28に埋め込まれ、第1の保護層24とは異なる絶縁層よりなる第2の保護層30とを有する。 (もっと読む)


【課題】オン抵抗が低く、かつ、Vth(閾値電圧)が高い窒化物半導体装置の提供。
【解決手段】アクセプタになるアクセプタ元素を含み、窒化物半導体で形成されたバックバリア層106と、バックバリア層106上に窒化物半導体で形成されたチャネル層108と、チャネル層108の上方に、チャネル層よりバンドギャップが大きい窒化物半導体で形成された電子供給層112と、チャネル層108と電気的に接続された第1主電極116、118と、チャネル層108の上方に形成された制御電極120と、を備え、バックバリア層106は、制御電極120の下側の領域の少なくとも一部に、アクセプタの濃度がバックバリア層の他の一部の領域より高い高アクセプタ領域126を有する窒化物半導体装置100。 (もっと読む)


【課題】 コラプス現象を効果的に抑制することを可能にしたスイッチング素子を提供する。
【解決手段】 スイッチング素子1aは、電子走行層12と、電子走行層12の上面に形成されてバンドギャップが電子走行層12より大きく電子走行層12とヘテロ接合する電子供給層13と、電子供給層13の上面に形成されてバンドギャップが電子供給層13より小さい再結合層17と、少なくとも一部が電子走行層12の上面に形成されるソース電極14及びドレイン電極15と、少なくとも一部が電子供給層13の上面に形成されて前ソース電極14及びドレイン電極15の間に配置されるゲート電極16と、を備える。スイッチング素子1aがオフ状態のとき、再結合層17で電子及び正孔が再結合する。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、2次元電子ガス除去領域260Bが、ドレイン電極211の長手方向の一方の端211Aから短手方向に伸ばした仮想線M71よりも長手方向外方に位置すると共にソース電極212の一端部212Aに対して短手方向に隣接する領域の下のGaN系積層体205に形成されている。また、2次元電子ガス除去領域260Aは、2次元電子ガス除去領域260Bの長手方向外方に隣接すると共にソース電極212の一端部212Aからソース電極接続部214に沿って短手方向に延在している。2次元電子ガス除去領域260A,260Bの存在によって、スイッチング時の動的な電界変動によってソース電極212の端部212Aからドレイン電極211の端部211Aへ向かって電子流が集中することを回避できる。 (もっと読む)


【課題】高電圧を印加しても短絡破壊を生じないトランジスタとして動作する半導体装置を提供する。
【解決手段】半導体装置1は、基板10(シリコン基板10a)の上に形成されたバッファ層21と、バッファ層21の上に形成されたチャネル層22と、チャネル層22の上に形成され、チャネル層22とヘテロ接合を構成する障壁層23とを備える。バッファ層21およびチャネル層22は、窒化物半導体で形成されている。チャネル層22は、膜厚を1μm以上2μm以下とされ、炭素濃度を5×1016cm-3以下とされている。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、各ソース電極12の長手方向の長さL2と各ドレイン電極11の長手方向の長さL1とが同じ長さである。また、ソース電極12の長手方向の端12A,12Bの長手方向の位置は、ドレイン電極11の長手方向の端11A,11Bの長手方向の位置と一致している。ソース電極12の長手方向の両端12A,12Bがドレイン電極11の長手方向の両端11A,11Bよりも長手方向外方へ突出していない構成により、ソース電極12の端12A,12Bからドレイン電極11の端11A,11Bへ向かって電子流が集中することを回避できる。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、ドレイン電極12の長手方向の端12A,12Bから長手方向と直交する短手方向に伸ばした仮想線M1,M2よりも長手方向外方に位置すると共にソース電極11に隣接する領域の下のGaN系積層体5、およびドレイン電極12の長手方向の端12A,12Bに長手方向外側に隣接する領域の下のGaN系積層体5に2次元電子ガスが存在しない2次元電子ガス除去領域31が形成されている。2次元電子ガス除去領域31の存在によって、スイッチング時の動的な電界変動によってソース電極11の端部からドレイン電極12の端部へ向かって電子流が集中することを回避できる。 (もっと読む)


【課題】 半導体装置を高耐圧化する技術を提供することを目的とする。
【解決手段】 半導体装置100は、p型の埋込み層26と、p型埋込み層26上に設けられており、ヘテロ接合面3が構成されている窒化物半導体のヘテロ接合層32を備えている。p型埋込み層26は、ソース電極10側からドレイン電極2側に向けて厚みが減少する厚み減少部24を有している。厚み減少部24では、ソース電極10側の減少開始点14からドレイン電極2側の減少終了点16までの長さ24bが、減少開始点14における厚み24aよりも長い。 (もっと読む)


【課題】耐圧特性に優れた高電子移動度トランジスタ(HEMT)を提供する。
【解決手段】基板12上に形成された複数の活性半導体層16、18を含むHEMT10。ソース電極20、ドレイン電極22、およびゲート24は、複数の活性層16、18と電気的に接触して形成される。スペーサ層26は、複数の活性層16、18の表面の少なくとも一部の上に形成され、ゲート24を覆っている。フィールドプレート30が、スペーサ層26上に形成されて、ソース電極22に電気的に接続され、このフィールドプレート30はHEMT10内の最高動作電界を低減する。 (もっと読む)


【課題】オン抵抗が低く、かつ、耐圧が高いノーマリーオフの半導体装置を提供する。
【解決手段】基板102の上方に形成された、III−V族化合物半導体からなるバックバリア層106と、バックバリア層106上に形成され、バックバリア層よりバンドギャップエネルギーが小さいIII−V族化合物半導体からなるチャネル層と108、チャネル層108にオーミック接続された第1の電極116,118と、チャネル層の上方に形成された第2の電極120と、を備え、バックバリア層106は第2の電極120の下方に設けられ、かつ、第2の電極120の下方から第1の電極の116,118下方まで連続して設けられていない半導体装置を提供する。 (もっと読む)


【課題】FETのソース領域にショットキー電極を形成し、内部にオミックパターン電極を備え、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフ動作すると共に高耐圧及び高電流で動作可能な、半導体素子及び製造方法を提供する。
【解決手段】内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ドレイン電極50と離間され、窒化物半導体層30にショットキー接合されるソース電極60と、ドレイン電極50とソース電極60との間の窒化物半導体層30上及びソース電極60の少なくとも一部上にかけて形成された誘電層40と、ドレイン電極50と離間されるように誘電層40上に配設され、一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上部に形成されたゲート電極70とを含む。 (もっと読む)


61 - 80 / 602