説明

Fターム[5F102GD04]の内容

接合型電界効果トランジスタ (42,929) | ゲート接合のタイプ (3,160) | pn接合型 (421)

Fターム[5F102GD04]の下位に属するFターム

Fターム[5F102GD04]に分類される特許

121 - 140 / 388


低いゲートリークを有する例えばGaNトランジスタなどのMISFETが提供される。一実施形態において、ゲートコンタクトの下且つバリア層の上に、補償型のGaN層を有することで、ゲートリークが低減される。他の一実施形態において、ゲートコンタクトの下且つバリア層の上に半絶縁性の層を用いることによって、ゲートリークが低減される。
(もっと読む)


エンハンスメントモードGaNトランジスタが提供される。当該トランジスタは、基板と、遷移層と、III族窒化物材料を有するバッファ層と、III族窒化物材料を有するバリア層と、ドレイン及びソースのコンタクトと、アクセプタ型ドーパント元素を含有するゲートと、前記ゲートと前記バッファ層との間の、III族窒化物材料を有する拡散バリアとを有する。
(もっと読む)


【課題】接合型電界効果トランジスタ等の半導体装置において、オン抵抗を低減できるようにする。
【解決手段】半導体装置の製造方法は、まず、基板101の上に第1の窒化物半導体層103、第2の窒化物半導体層104及びp型の第3の半導体層105を順次エピタキシャル成長する。これよりも後に、第3の半導体層105を選択的に除去する。これよりも後に、第2の窒化物半導体層104の上に、第4の窒化物半導体層106をエピタキシャル成長する。これよりも後に、第3の半導体層105の上にゲート電極を形成する。 (もっと読む)


【課題】J−FETでは、ゲート領域およびバックゲート領域からのp型不純物拡散により、ゲート領域直下のチャネル領域のn型不純物濃度が低下し、IDSSばらつきや、順伝達アドミタンスgm、電圧利得Gvの劣化やノイズ電圧Vnoが増加する問題があった。
【解決手段】バックゲート領域となるp型半導体基板表面にソース領域5、ドレイン領域6を設け、これらの間のp型半導体基板表面にチャネル領域4を設ける。チャネル領域4下方のp型半導体基板に、ゲート領域7を設け、ゲート領域7の上面は、チャネル領域4下面と接触する。これにより、チャネル領域4の不純物拡散ばらつきを防止し、チャネル深さばらつきを抑制できる。従って電流経路の抵抗値を略均一にでき、DSSを安定化させ、順伝達アドミタンスgm、電圧利得Gvを向上させ、ノイズ電圧Vnoを低減できる。更に同一ウエハ内でのIDSSばらつきも抑制できる。 (もっと読む)


【課題】還流ダイオードの導通時の損失並びに過渡動作時の損失は抑えつつ、逆回復動作時に生じる電流・電圧の振動現象を抑制することが容易に可能で、かつ、高密度化が容易な電力用半導体装置を提供する。
【解決手段】ユニポーラ動作と同等の動作をする還流ダイオードと、還流ダイオードに並列接続されたキャパシタ210及び抵抗220を有する半導体回路200とを備え、半導体回路200は、抵抗220の少なくとも一部として機能する半導体基体11と、半導体基体11をキャパシタ210の一方の電極とし、半導体基体11の一主面上の所定エリアに、所定エリアの面積よりも大きい表面積を有して設けられた誘電体領域12とを備える。 (もっと読む)


【課題】静電容量と抵抗の値が異なる複数のスナバ回路を用意する必要がなく、且つ逆バイアス時に還流ダイオードに発生する振動現象の収束時間を短縮できる半導体装置及び電力変換装置を提供する。
【解決手段】アノード端子300とカソード端子400からなる一対の接続端子と、一対の接続端子間に接続されたユニポーラ動作する還流ダイオード100と、一対の接続端子間に還流ダイオード100と並列接続され、少なくともキャパシタ210と抵抗220を含む半導体スナバ回路200と備え、半導体スナバ回路200のキャパシタ210と抵抗220の値が可変である。 (もっと読む)


【課題】、環流ダイオードの逆回復動作時に発生する電流及び電圧の振動現象の収束時間を短縮可能な半導体装置を提供する。
【解決手段】半導体装置10は、ユニポーラ型の還流ダイオード100と、還流ダイオード100に並列接続され、かつ、キャパシタ210および抵抗220を有する半導体スナバ200とを備えている。半導体スナバ200は、キャパシタ210または抵抗220と接続される第1電極13と、第1電極13と絶縁されつつ、第1電極13と同一主面上に形成されて、キャパシタ210または抵抗220と接続される第2電極14とを有する。 (もっと読む)


【課題】還流ダイオードの逆回復動作時に生じる振動現象の収束時間を低減することが可能な半導体装置を提供する。
【解決手段】 ユニポーラ動作をする還流ダイオード100と、還流ダイオード100に並列接続され、キャパシタ部210及び半導体層からなる抵抗部220を含む半導体スナバ200とを備える。抵抗部220が、キャパシタ部210に接続された第1抵抗領域90、第1抵抗領域90に並列に配置された周辺抵抗領域91、第1抵抗領域90及び周辺抵抗領域91の間に第1抵抗領域90の抵抗値以上の抵抗値を有する抵抗分離領域92を有する。 (もっと読む)


【課題】還流ダイオードの逆回復動作時に生じる振動現象の収束時間を低減することが可能な半導体装置を提供する。
【解決手段】 ユニポーラ動作をする還流ダイオード100と、還流ダイオード100に並列接続され、半導体基板領域を含む半導体スナバ200とを備える。半導体スナバ200は、還流ダイオード100の逆バイアス時に少なくとも前記基板領域の一端側に形成されるキャパシタ210と、基板領域の一部を含む抵抗220と、還流ダイオード100の順バイアスに対して逆阻止状態となるように、基板領域の少なくとも一部に形成された逆阻止型ダイオード222とを含む。 (もっと読む)


【課題】接合FETを備えた半導体装置の特性を向上させる。
【解決手段】主たるトランジスタとして接合FET10を備え、制御用トランジスタとしてMISFET20を備えた半導体装置であって、接合FET10は第1ゲート電極G1、第1ソース電極S1、および、第1ドレイン電極D1を有し、MISFET20は第2ゲート電極G2、第2ソース電極S2、および、第2ドレイン電極D2を有する。また、MISFET20はnチャネル型であり、エンハンスメント型の電気特性を有する。また、MISFET20の第2ゲート電極G2と第2ドレイン電極D2とは短絡接続され、接合FET10の第1ゲート電極G1とMISFET20の第2ソース電極S2とは短絡接続されている。 (もっと読む)


【課題】環流ダイオードの逆回復動作時に発生する電流及び電圧の振動現象の収束時間を短縮可能な半導体装置を提供する。
【解決手段】半導体装置10は、ユニポーラ型の還流ダイオード100と、還流ダイオード100に接続されたユニポーラ型の還流ダイオード150と、還流ダイオード100に並列接続され、少なくともキャパシタ210と抵抗220とを有する半導体スナバ200、及び、還流ダイオード150に並列接続され、少なくともキャパシタ260と抵抗270とを有する半導体スナバ250が形成された基板領域11を有する半導体チップ1000とを備えている。 (もっと読む)


【課題】並列接続された還流ダイオードと半導体スナバ回路が隣接して配置されるので、小型化され且つ逆バイアス時に還流ダイオードに発生する振動現象の収束時間を短縮できる半導体装置を提供する。
【解決手段】ユニポーラ動作する還流ダイオード100と、少なくともキャパシタ210及び抵抗220を有し、還流ダイオード100と並列接続されて還流ダイオード100に隣接して配置された半導体スナバ回路200とを備える。 (もっと読む)


【課題】還流ダイオードの逆回復動作時に発生する電流及び電圧の振動現象の収束時間を短縮する。
【解決手段】半導体装置は、還流ダイオードDと、還流ダイオードDに対し並列に接続され、且つ、キャパシタと抵抗を有する半導体スナバ回路200と、から構成され、半導体スナバ回路中200のキャパシタが、還流ダイオードDの遮断状態において、還流ダイオードDにより空乏層が形成される前記半導体基体中の領域とは異なる位置に形成されるので、還流ダイオードDの逆回復動作時に発生する電流及び電圧の振動現象の収束時間を短縮することができる。 (もっと読む)


【課題】環流ダイオードの逆回復動作時に発生する電流及び電圧の振動現象の収束時間を短縮可能な半導体装置を提供する。
【解決手段】半導体装置10は、ユニポーラ型の還流ダイオード100と、還流ダイオード100に並列接続され、かつ、キャパシタ210および抵抗220を有する半導体スナバ200とを備えている。半導体スナバ200と還流ダイオード100とが積層されている。 (もっと読む)


【課題】RCスナバ回路の抵抗Rの値を任意に設計可能な半導体スナバ回路を用いた半導体装置、電力変換装置、半導体装置の製造方法を提供する。
【解決手段】ユニポーラ動作をする還流ダイオード100と、還流ダイオード100に並列接続され、キャパシタ210及び抵抗220をモノリシックに集積化した半導体スナバ回路200とを備える半導体装置において、抵抗220が、半導体スナバ回路200の基材となる半導体基体の一部に形成され、半導体基体の比抵抗よりも高い比抵抗を有する高抵抗層を含む。 (もっと読む)


【課題】環流ダイオードの逆回復動作時に発生する電流及び電圧の振動現象の収束時間を短縮可能な半導体装置を提供する。
【解決手段】半導体装置10は、ユニポーラ型の還流ダイオード100と、還流ダイオード100に対し並列接続され、基板領域21とキャパシタ210と抵抗220とを含む半導体スナバ200とを備えている。抵抗220の少なくとも一部が、半導体スナバ200の基板領域21の一主面上に直接的にもしくは間接的に形成された、導電性材料からなる膜状の導電層17を含み、かつ、抵抗220に電流が流れる際に、導電層17に流れる電流の経路の少なくとも一部が、膜厚方向以外の方向へ流れる。 (もっと読む)


【課題】環流ダイオードの逆回復動作時に発生する電流及び電圧の振動現象の収束時間を短縮する。
【解決手段】半導体装置1は、還流ダイオードDと、還流ダイオードDに対し並列に接続され、且つ、キャパシタCと抵抗Rを有する半導体スナバ2を備え、環流ダイオードDの遮断状態における静電容量に対するキャパシタCの静電容量の比が0.1以上になっている。このような構成によれば、振動現象の収束効果が高くなるように半導体スナバ2を構成するキャパシタCの静電容量が設定されているので、環流ダイオードDの逆回復動作時に発生する電流及び電圧の振動現象の収束時間を短縮することができる。 (もっと読む)


【課題】 パワーデバイスに必要な特性を確保しながら、コストを低減することができる窒化物半導体素子およびその製造方法を提供すること。
【解決手段】 CAVET1において、シリコン基板2上に、AlN構造8を有するバッファ層4、電子走行層6、および電子供給層7を積層した構造を有し、電子走行層6および電子供給層7に跨る壁面16を有する積層構造部3を形成する。バッファ層4と電子走行層6との間には、開口部13を有するマスク層12を形成する。ソース電極18は、電子供給層7上に形成し、ゲート電極20は、電子供給層7上におけるソース電極18よりも壁面16寄りの位置に設ける。ドレイン電極30は、シリコン基板2の裏面22側からシリコン基板2およびバッファ層4を貫通するように設ける。そして、壁面16に沿って埋込電極17を設け、開口部13を介してドレイン電極30に電気的に接続する。 (もっと読む)


【課題】JFETの電気的特性を改善すること。
【解決手段】N型基板201上のPウェル202内部にN型チャネル領域203がある。N型チャネル領域203上にP型ゲート領域103がある。ゲート領域103の中にN型ソース領域107及びドレイン領域106が互いに平行に配置され、それらはN型チャネル203に接続されている。ゲート領域103を配線に接続するためにP型ゲートコンタクト領域104がソース領域107及びドレイン領域106から離れた位置に設けられている。N型チャネル203とPウェル202との境界の上に平坦な分離用のシリコン熱酸化膜204があり、その上に分離用の多結晶シリコン101がある。多結晶シリコン101より外側のPウェル202の上に配線を接続するためにPウェルコンタクト領域102がある。 (もっと読む)


【課題】SiCを素材として採用することで本来得られる特性をより確実に得ることが可能な半導体装置およびその製造方法を提供する。
【解決手段】JFET1は、少なくとも上部表面14Aが炭化珪素からなるウェハ10と、上部表面14A上に形成されたゲートコンタクト電極21とを備える。ウェハ10は、上部表面14Aを含むように形成されたイオン注入領域である第1のp型領域16を含む。第1のp型領域16は、上部表面14Aを含むように配置されるベース領域16Aと、突出領域16Bとを含む。ベース領域16Aは、上部表面14Aに沿った方向における幅wが、突出領域16Bの幅wよりも広い。ゲートコンタクト電極21は、平面的に見てその全体が第1のp型領域16に重なるように、第1のp型領域16に接触して配置されている。 (もっと読む)


121 - 140 / 388