説明

Fターム[5F102GD04]の内容

接合型電界効果トランジスタ (42,929) | ゲート接合のタイプ (3,160) | pn接合型 (421)

Fターム[5F102GD04]の下位に属するFターム

Fターム[5F102GD04]に分類される特許

81 - 100 / 388


【課題】平坦面に対してデバイス形成できる絶縁分離構造を有し、かつ、高周波でのノイズ伝播や高温時でのリーク電流の発生を抑制できるCJFETを備えたSiC半導体装置を提供する。
【解決手段】絶縁分離層3にてn-型SiC層2やp-型SiC層4を絶縁分離する。これにより、平坦面に対してデバイス形成を行うことができる。このため、製造工程の簡略化を図ることが可能となる。また、PN分離ではなく、半絶縁性のイントリンシック層にて構成された絶縁分離層3によって絶縁分離構造を構成しているため、絶縁分離層3によって高周波ノイズを吸収することによる高周波でのノイズ伝播の抑制を行えると共に、高温時でのリーク電流の発生の抑制を行うことが可能となる。 (もっと読む)


【課題】ゲート−ソース間およびゲート−ドレイン間のキャパシタンスの低減と、JFETをオンさせる際に必要なゲート印加電圧が高電圧になることを抑制する。
【解決手段】凹部4c内に形成されたi型(イントリンシック半導体)側壁層5を介してp+型ゲート領域6を形成する。このような構成とすれば、n+型層4とp+型ゲート領域6との間にさらにp+型ゲート領域6よりも低濃度のp-型層が必要とされない。このため、n-型チャネル層3に直接接触している高濃度のp+型ゲート領域6によって、n-型チャネル層3内に伸びる空乏層幅を制御できる。したがって、n+型層4とp+型ゲート領域6との間にさらにp-型層が備えられる場合と比較して、ゲート印加電圧が高電圧になることを抑制できる。また、p+型ゲート領域6の側面がi型側壁層5によってn+型層4と分離されるため、ゲート−ソース間およびゲート−ドレイン間のキャパシタンスを低減できる。 (もっと読む)


【課題】インバータ等に適用される半導体デバイスとし単方向デバイスを適用した場合に、負荷からの還流電流が流れるタイミングは、還流ダイオードを通して流れるためダイオードにおける損失を取り除けないという課題があった。
【解決手段】第一ゲート端子2、第二ゲート端子3、ドレイン端子4、ソース端子5を備え、第一ゲート端子2、第二ゲート端子3を各オンオフすることで4つの動作モードを有する双方向スイッチ1を使用し、還流電流が流れるタイミングに応じて、第三モードで通電するように前記第一ゲート端子2、および第二ゲート端子3を駆動させる同期制御手段を備えるので、還流ダイオードによる損失を無くすことができ、損失が少なく効率の良いインバータを提供できる双方向スイッチの駆動方法を提供する。 (もっと読む)


【課題】オン抵抗の増加を抑制すると共にリーク電流を低減させることができる半導体装置を提供すること。
【解決手段】本発明の一態様に係る半導体装置は、ノンドープInGaAs層8と、ノンドープInGaAs層8上に形成された、第1リセス部を備えるSiドープGaAs層1と、ノンドープInGaAs層8とSiドープGaAs層1との間に形成され、第1リセス部内に設けられた第2リセス部を備える、ノンドープオーダ系InGaP層4とその上に形成されるノンドープGaAs層3からなる2層構造半導体層と、第2リセス部内において、ノンドープInGaAs層8上に設けられたCドープGaAs層13と、CドープGaAs層13と、ノンドープGaAs層3及びノンドープオーダ系InGaP層4の界面との間に設けられると共に、ノンドープオーダ系InGaP層4とCドープGaAs層13との間の一部には設けられていない側壁絶縁膜17とを備える。 (もっと読む)


【課題】 第1半導体層と第2半導体層とのヘテロ接合により第1半導体層に二次電子ガス層を生じさせつつ、ソース電極とドレイン電極との間の通電状態を切り換えるためのゲート電圧のしきい値を所定の値に調整することができる電界効果トランジスタを提供する。
【解決手段】 電界効果トランジスタ10では、サファイア基板11上に、i型のGaNからなるGaN層13と、i型のGaNと格子定数が異なるi型のAlGaNからなるAlGaN層14と、i型のAlGaNよりもエッチングレートが小さいi型のAlInNからなるAlInN層15とが順に形成されている。AlInN層15の上端から途中まで伸びている溝25が形成されており、その溝25の底部の少なくとも一部にゲート電極26がショットキー接続されている。 (もっと読む)


【課題】耐圧性に優れかつチャネル領域の不純物濃度やその厚さ等のばらつきの影響を受けにくいJFETを提供する。
【解決手段】SiC基板9の一方面上にはアルミニウム膜7が形成されている。そのアルミニウム膜7に接するように、そのアルミニウム膜7の両側に、SiC膜からなるチャネル領域4a、4bが設けられている。チャネル領域4a、4b上にはソース領域5a、5bを介してソース電極11a、11bが形成されている。チャネル領域4a、4bのアルミニウム膜7側と反対側にp型SiC膜2a、2bを介してゲート電極13が形成されている。SiC基板9の他方面上には、ドレイン領域6が形成されている。 (もっと読む)


【課題】ゲート電圧が閾値近傍に近づくときに発生する過剰なドレイン電流を抑制する。
【解決手段】トレンチ6の先端部に形成されたn-型チャネル層7がトレンチ6の長辺に位置する部分よりも膜厚が厚くなるため、そのトレンチ6の先端部においてJFET構造が構成されないようにする。例えば、トレンチ6の先端部の周辺を含めてn+型SiC基板1の外縁部においてn+型ソース領域4が除去されると共に、トレンチ6の先端部においてn-型チャネル層7および第2ゲート領域8が除去された凹形状とする。これにより、トレンチ6の先端部のJFET構造の閾値がトレンチ6の長辺に位置する部分のJFET構造の閾値からずれることによる影響を受けることがない。したがって、ゲート電圧が閾値近傍に近づくときに発生する過剰なドレイン電流を抑制できる構造のSiC半導体装置とすることが可能となる。 (もっと読む)


【課題】ゲート−ソース間およびゲート−ドレイン間のキャパシタンスの低減を図ると共に、JFETをオンさせる際に必要なゲート印加電圧が高電圧になることを抑制する。
【解決手段】p+型ゲート領域2をSiC基板1の内部に埋め込んだ構造とする。これにより、ゲート−ソース間およびゲート−ドレイン間のキャパシタンスの低減を図ることが可能となる。また、p+型ゲート領域2がn-型チャネル層3に直接接触させられる構造であるため、p+型ゲート領域2から広がる空乏層によって容易にn-型チャネル層3をピンチオフさせることができ、JFETをオンさせる際に必要なゲート印加電圧が高電圧になることを抑制できる。 (もっと読む)


【課題】DモードとEモードの素子を組み合わせた半導体装置およびその製造方法を提供する。
【解決手段】DモードとEモードのJFETにおけるチャネル領域を設定する場所にそれぞれ凹部2aと凸部2bを備えることで、同一基板上に厚みが異なるn型チャネル層3を形成する。そして、このような厚みが異なるn型チャネル層3によってDモードとEモードで作動するJFETを同一基板上に備えることができるため、SiCでもDモードとEモードのJFETを組み合わせたSiC半導体装置を実現することが可能となる。 (もっと読む)


【課題】エピタキシャル成長を行わなくても素子形成が行え、かつ、バンチングが発生することを防止できるようにする。
【解決手段】エピタキシャル成長を行わず、素子を構成する各領域をイオン注入のみによって形成すると共に、SiC基板1としてオフ角を有しないオン基板を用いる。これにより、イオン注入領域を活性化するための熱処理によってバンチングが発生しないようにできる。したがって、エピタキシャル成長を行わなくても素子形成が行え、かつ、バンチングが発生することを防止できるSiC半導体装置とすることができる。 (もっと読む)


【課題】低電圧時の電流が適度に大きく、高電圧時の電流が小さい半導体装置を提供する。
【解決手段】半導体装置100は、整流素子D1と、抵抗R1と、nチャネルディプリーショントランジスタDTと、アノード電極パッド7bとが直列接続された構成を有する半導体装置100であって、nチャネルディプリーショントランジスタDTのゲート電位を抵抗R1の両端の電位差により生成し、かつゲート電位によってnチャネルディプリーショントランジスタDTのチャネル91に空乏層Dを生じさせるよう構成されている。 (もっと読む)


【課題】高耐圧および高電流のスイッチング動作が可能で、かつ製造が容易なFETを提供する。
【解決手段】半導体薄体の一の主表面に設けられた、第1導電型のソース領域(1)と、第1導電型のチャネル領域(10)と、チャネル領域を限定する第2導電型の限定領域(5)と、他の主表面に設けられた第1導電型のドレイン領域(3)と、厚さ方向に連続する第1導電型のドリフト領域(4)とを備え、ドリフト領域(4)およびチャネル領域(10)の不純物濃度は、ソース領域(1)、ドレイン領域(3)および限定領域(5)の不純物濃度よりも低く、チャネル領域(10)の不純物濃度はドリフト領域(4)の不純物濃度よりも低い。 (もっと読む)


【課題】チャネル層の厚みのバラツキを抑制できるJFET、MOSFETもしくはMESFETを備えた半導体装置およびその製造方法を提供する。
【解決手段】n+型層3に対して異方性エッチングを行うことによって凹部4を形成したのち、この凹部4内にエピタキシャル成長させることによってn型チャネル層5を形成する。これにより、n型チャネル層5を一定の膜厚かつ一定の濃度で形成することが可能となる。このため、従来の構造と異なり、n型チャネル層5の膜厚が一定なバラツキのない構造とすることが可能となる。したがって、JFETの特性も一定とすることが可能となる。 (もっと読む)


半導体デバイスおよびそのデバイスを製造する方法が提供される。デバイスは、接合型電界効果トランジスタ(JFET)、または接合型バリアショットキー(JBS)ダイオードまたはPiNダイオードのようなダイオードであり得る。デバイスは、打込みマスクを用いる選択的イオン注入を使用して製造される。デバイスは、打込みマスクからの通常の入射イオンの散乱によって形成された打込み側壁を有する。長いチャネル長の縦型接合型電界効果トランジスタが記載される。デバイスは、シリコンカーバイド(SiC)のようなワイドバンドギャップ半導体材料から製造されることができ、高温および高出力の用途において使用することができる。 (もっと読む)


【課題】パワートランジスタに適用可能なノーマリオフ型の窒化物半導体装置に生じる電流コラプスを抑制できるようにする。
【解決手段】窒化物半導体装置は、サファイアからなる基板11と、該基板11の上に形成されたGaNからなるチャネル層13と、該チャネル層13の上に形成され、該チャネル層13よりもバンドギャップエネルギーが大きいAlGaNからなるバリア層14と、該バリア層14の上に形成され、p型AlGaN層15及びp型GaN層16を含むp型窒化物半導体層と、該p型窒化物半導体層の上に形成されたゲート電極19と、該ゲート電極19の両側方の領域にそれぞれ形成されたソース電極17及びドレイン電極18とを有している。p型窒化物半導体層は、ゲート電極19の下側部分の厚さが該ゲート電極19の側方部分の厚さよりも大きい。 (もっと読む)


【課題】パワー半導体素子を駆動するためのドライバを低コストで得ることが可能な半導体装置およびそれを備えた電子機器を提供する。
【解決手段】半導体装置101は、ハイサイド駆動部62からの駆動信号を受ける第1のスイッチング機能部と、ローサイド駆動部64からの駆動信号を受ける制御電極とを有する第2のスイッチング機能部とを備え、ハイサイド駆動部62は、ノーマリーオン型の電界効果トランジスタを含み、スイッチング制御信号の基準電圧を出力ノードの電位へシフトした駆動信号を出力し、第1のスイッチング機能部はノーマリーオン型の第1の電界効果トランジスタTr1を含み、第2のスイッチング機能部はノーマリーオン型の第2の電界効果トランジスタTr2を含み、ハイサイド駆動部62および第1の電界効果トランジスタTr1は第1の半導体チップ71に含まれている。 (もっと読む)


本願は、ドレイン(140)と、ゲート(160)と、ソース(130)と、を有し、ドレイン(140)およびソース(130)が、第1の型の半導体領域によって形成される、電界効果トランジスタに関する。一局面では、電界効果トランジスタはまた、ゲート(160)とドレイン(140)の中間のさらなるN領域(410)等のさらにドープされた領域を含む。さらにドープされた領域は、電界効果トランジスタの中間ドレインとして見なすことができる。いくつかの実装では、さらにドープされた領域は、高濃度にドープすることができる。さらにドープされた領域によって、ドレイン(140)周囲の電界勾配を減少させることができる。
(もっと読む)


トランジスタが、第1の半導体材料の半導体ドリフト層と、この半導体ドリフト層上の半導体チャネル層とを含むことができる。半導体チャネル層は、第1の半導体材料とは異なる第2の半導体材料を含むことができる。半導体ドリフト層と半導体チャネル層の間には、第1及び第2の半導体材料とは異なる第3の半導体材料を含むことができる半導体相互接続層を電気的に結合することができる。また、半導体チャネル層上には、制御電極を設けることができる。 (もっと読む)


【課題】ノーマリオフの接合型FETは閾値が低いため、ノーマリオフの接合型FETを用いた半導体駆動回路では高精度な電圧制御,高速な入力容量の充電,誤動作等の課題を有していた。
【解決手段】ツェナーダイオードによる高精度なゲート電圧生成方式やスピードアップコンデンサによるターンオン損失の低減,ゲート・ソース間のコンデンサの接続やソース端子の最適実装方式による誤動作の防止回路を適用することで、ノーマリオフの接合型FETに最良な半導体駆動回路を提案する。 (もっと読む)


【課題】オフ特性が優れ、ゲート順方向電圧の範囲が広く、かつ、逆方向ブレークダウン電圧を高くすることができる構造の接合型FETを有する半導体装置を提供する。
【解決手段】第一のアンドープ層3上に、第一のアンドープ層3と接して、第一のアンドープ層3のバンドギャップより小さいバンドギャップを有するバンドギャップの小さい半導体層4が設けられ、その両端部と電気的に接続して一対の第一導電型コンタクト層6が設けられ、第一のアンドープ層3の下側に第二導電型コンタクト層2が設けられている。そして、一対の第一導電型コンタクト層6のそれぞれにオーミックコンタクトしてソース電極/ドレイン電極7が、また、第二導電型コンタクト層2にオーミックコンタクトしてゲート電極8がそれぞれ設けられることにより、接合型FETが構成されている。 (もっと読む)


81 - 100 / 388