説明

Fターム[5F102GK08]の内容

接合型電界効果トランジスタ (42,929) | バッファ層(中間層) (2,318) | 多層構造(起格子を含む) (565)

Fターム[5F102GK08]に分類される特許

121 - 140 / 565


【課題】制御性の良い製造方法のみで形成することができる高周波数動作が可能なノーマリオフ型の窒化物半導体装置を提供する。
【解決手段】ソース電極5とドレイン電極6との間の電子供給層4上に、電子供給層とショットキー接触する浮遊電極8を配置し、この浮遊電極8上に絶縁膜9を介してゲート電極7を配置する。そして、ゲート電極に正バイアス印加し、浮遊電極に電子を蓄積される。 (もっと読む)


【課題】チャネル層をInAsから構成するヘテロ構造の電界効果トランジスタで、高速で安定した動作ができるようにする。
【解決手段】キャップ層105の表面を塩酸からなる処理液で処理する。処理液は、例えば、塩化水素の37質量%水溶液を、水で5倍(体積)に希釈したものである。次に、基板101を処理液中より引き上げ、直ちにキャップ層105の表面に付着している塩酸を除去する。この塩酸の除去では、水を用いることなく、例えば、キャップ層105の表面に窒素ガスを吹き付けることで付着している塩酸を除去する。 (もっと読む)


【課題】ダイヤモンド基板上に、クラックが抑制され、かつ膜厚が厚い単結晶窒化物層を有する半導体積層構造を提供すること。
【解決手段】ダイヤモンド基板上に直接成長した窒化物層が多結晶となる上記課題を解決するため、本発明に係る半導体積層構造は、ダイヤモンド基板と、ダイヤモンド基板上の、Siを含む第1の層と、第1の層上の、単結晶窒化物で構成される第2の層とを備える。Siを含む第1の層をダイヤモンド基板と第2の層との間に設けることにより、第2の層の膜厚を大きくしても、第2の層を構成する窒化物を、クラックの抑制された単結晶とすることができる。したがって、当該半導体積層構造を利用することで、高いドレイン電流および出力電力密度を有する電界効果トランジスターを実現することが可能である。 (もっと読む)


【課題】本発明は、外部ノイズ等の過大電流に起因するHEMTの損傷、破壊若しくは発火を防止することができる半導体装置を提供する。
【解決手段】半導体装置1は、第1の半導体層31と、第2の半導体層32と、二次元キャリアガス層33と、ソース電極41と、ドレイン電極42と、ゲート電極5と、二次元キャリアガス層33上においてゲート電極5とドレイン電極42との間に配設された補助電極6と、を備え、二次元キャリアガス層33のゲート電極5とソース電極6との間のチャネル抵抗R1に比べて、二次元キャリアガス層33のゲート電極5と補助電極6との間のチャネル抵抗R2が高く設定されている。 (もっと読む)


【課題】チャネル層をInAsから構成するヘテロ構造の電界効果トランジスタで、高速で安定した動作ができるようにする。
【解決手段】第1障壁層102に形成されてAlGaSbに対して浅いアクセプタとなる不純物が導入された第1不純物導入領域110と、第2障壁層104に形成されてAlGaSbに対して浅いアクセプタとなる不純物が導入された第2不純物導入領域111とを備える。また、第1不純物導入領域110および第2不純物導入領域111は、チャネル層103の電子に不純物散乱を生じさせない範囲でチャネル層103より離間して形成されている。 (もっと読む)


【課題】ゲート電極の端部でのバイアス電界集中が緩和され、且つ動作時のオン抵抗の増大が抑制された化合物半導体装置を提供する。
【解決手段】キャリア供給層22、及びキャリア供給層22との界面近傍において二次元キャリアガス層23が形成されるキャリア走行層21を有する化合物半導体層20と、化合物半導体層20の主面200上に配置されたソース電極3及びドレイン電極4と、ソース電極3とドレイン電極4間で主面200上に配置されたゲート電極5と、ゲート電極5とドレイン電極4間で主面200上方に配置されたフィールドプレート6と、フィールドプレート直下の二次元キャリアガス層が形成される領域内に配置された、上方にフィールドプレート若しくはゲート電極が配置されていない二次元キャリアガス層が形成される領域よりも導電率が低い低導電性領域210とを備える。 (もっと読む)


【課題】ピンチオフ特性を改善することが可能な半導体装置を提供することを目的とする。
【解決手段】本発明は、SiC基板10上に設けられ、アクセプタ濃度(Na)がドナー濃度(Nd)以上の濃度であるAlGaNバッファ層18と、AlGaNバッファ層18上に設けられたGaN電子走行層14と、GaN電子走行層14上に設けられ、GaNよりもバンドギャップが大きいAlGaN電子供給層16と、を有する半導体装置である。 (もっと読む)


【課題】シリコン基板上にバッファ層を介して形成されるGaN層を高品質にすることが可能な半導体装置およびその製造方法を提供すること。
【解決手段】本発明は、シリコン基板10上に設けられ、GaNよりもバンドギャップが大きいバッファ層16と、バッファ層16上に設けられた第1のGaN層18と、第1のGaN層18の上面に接して設けられた第2のGaN層20と、を有し、第1のGaN層18に含まれる炭素の濃度は、第2のGaN層20に含まれる炭素の濃度に比べて高い半導体装置である。 (もっと読む)


【課題】ピンチオフ特性の改善が可能な半導体装置を提供すること。
【解決手段】本発明は、SiC基板10上に設けられた第1のGaN層18と、第1のGaN層18上に設けられた第2のGaN層20(電子走行層)と、第2のGaN層20上に設けられ、GaNよりもバンドギャップが大きいAlGaN電子供給層16と、を有し、第1のGaN層18のアクセプタ濃度は第2のGaN層20のアクセプタ濃度よりも高い半導体装置である。 (もっと読む)


【課題】III族窒化物半導体からなる電界効果トランジスタにおける高電圧スイッチング時の電流コラプスを効果的に抑制できるようにする。
【解決手段】第1の半導体層103は、少なくともゲート電極106におけるドレイン電極107側の端部の下側の領域において、炭素濃度が1×1017cm−3未満である低炭素濃度領域を有し、基板101の上面から第1の半導体層103及び第2の半導体層104を含むドレイン電極までの半導体層の厚さをd1(μm)とし、低炭素濃度領域の厚さをd2(μm)とし、動作耐圧をV(V)としたとき、V/(110・d1)≦d2<V/(110・d1)+0.5の関係を満たし、且つ、緩和状態におけるオン抵抗をRon0とし、動作電圧Vにおけるオフ状態からオン状態に遷移した100μs後のオン抵抗をRonとしたとき、電流コラプス値の指標とするRonとRon0との比の値が、Ron/Ron0≦3である。 (もっと読む)


【課題】歩留りの低下を抑制する。
【解決手段】開口部121.1の形成により、第1の半導体層110の上面のうち、上方に第2の半導体層120が形成されていない部分の少なくとも一部には、絶縁体130.1が形成される。開口部121.1には、絶縁体130.1を覆うようにソース電極S10が形成される。ソース電極S10は、第1の半導体層110と前記第2の半導体層120との界面と接するように形成される。 (もっと読む)


【課題】従来よりも反りの値を低減させたIII族窒化物エピタキシャル基板を提供することを目的とする。
【解決手段】Si基板と、上記Si基板上に形成された超格子積層体と、上記超格子積層体上にエピタキシャル成長されたIII族窒化物積層体とを具え、上記超格子積層体が、上記Si基板側からAlN材料を含む第1層、AlxGa1-xN(0<x<1)材料を含む第2層、およびAlyGa1−yN(0≦y<1)材料を含む第3層(但し、第2層のAl組成xおよび第3層のAl組成yは、y<xの関係を有する)を順に有する積層体を複数組そなえることを特徴とする。 (もっと読む)


【課題】ワイドギャップ半導体基板の位置検出を、可視光を用いて高精度に行う。
【解決手段】一実施形態によれば、ナローギャップ半導体基板(例えばSi基板2)の主面の所定の位置に彫り込み型のアライメントマーク4が形成されたナローギャップ半導体基板のその主面上にワイドギャップ半導体層(例えばGaN層19)をエピタキシャル成長したことにより、基板位置決め用のアライメントマークが予め埋め込まれているワイドギャップ半導体基板を提供する。 (もっと読む)


【課題】窒化物系半導体素子及びその製造方法を提供する。
【解決手段】ダイオード構造物を有するベース基板110と、該ベース基板110上に配置されるエピタキシャル成長膜120と、該エピタキシャル成長膜120上に配置される電極部140とを含み、該ダイオード構造物は、第1タイプの半導体層112と、該第1タイプの半導体層の中央に介在する第2タイプの半導体層114とを含む。 (もっと読む)


【課題】逆方向の漏洩電流を防止し、製作コストを減少させた窒化物系半導体素子及びその製造方法を提供する。
【解決手段】本発明は窒化物系半導体素子及びその製造方法に関するものであり、本発明による窒化物系半導体素子はPN接合構造を有するベース基板、前記ベース基板上に配置されるエピ成長膜、そして前記エピ成長膜上に配置された電極部を含む。 (もっと読む)


【課題】反りの小さな半導体基板および半導体装置を提供する。
【解決手段】Si基板10上に接して形成されたX線回折による(002)面のロッキングカーブ半値幅が1500秒以下のAlN層12と、AlN層12上に形成されたGaN系半導体層14と、を具備する半導体基板であって、その反りの曲率半径は±25m以上であり、反り量は、半導体基板の大きさを4インチとした場合、±50μm以下である。GaN系半導体層14はAlN層12から圧縮応力を受ける。 (もっと読む)


【課題】バランス抵抗器の接続されたゲート間伝導領域を有するマルチゲート半導体デバイスにおいて、スイッチ素子として使用した際の低挿入損失と素子サイズを抑えつつ、オフ時の非線形性を改善する。
【解決手段】バランス抵抗器405のゲート間伝導領域への接続点をゲートの2つの両端より内側に設ける。好ましくはメアンダ状ゲートの屈曲領域4061に設ける。 (もっと読む)


【課題】GaN系半導体層のグレインサイズを大型化することが可能な半導体装置を提供すること。
【解決手段】本発明は、(111)面から0.1度以下のオフ角度で傾斜した面を主面とするSi基板10と、Si基板10の主面に接して設けられ、(002)面のX線回折におけるロッキングカーブの半値幅が2000sec以下であるAlN層12と、AlN層12上に設けられたGaN系半導体層20と、を備える半導体装置100である。 (もっと読む)


【課題】オン抵抗の低減を図ることができる電界効果トランジスタ(FET)を提供する。
【解決手段】FET101は、化合物半導体基板1と、化合物半導体基板1上に形成され、当該基板側から見て、n型キャリアが蓄積するチャネル層5、ショットキー層8、及びキャップ層9を順次含む半導体積層構造10と、ゲート電極20、ソース電極21、及びドレイン電極22とを備えている。キャップ層9は、ショットキー層8側から見て、自然超格子構造を有するアンドープの又はn型キャリアが添加された第1のInGaP層9Aと、自然超格子構造を有しないn型キャリアが添加された第2のInGaP層9Bとを順次含んでいる。 (もっと読む)


【課題】GaN系半導体層内に形成される電子トラップ濃度を低減する。
【解決手段】Si基板10上に接して形成されたAlNを主成分とする下地層12と、前記下地層12上に形成され、前記下地層12上に形成され、前記下地層12から圧縮応力を受ける第1バッファ層14と、前記第1バッファ層14上に形成された第2バッファ層16と、前記第2バッファ層16上に形成されたAlの組成比が0.1以下のGaN系半導体層18と、を具備し、前記第2バッファ層16における前記第1バッファ層14側の面の結晶軸長に対し前記第1バッファ層14と反対の面の結晶軸長が前記GaN系半導体層18に近く、前記第2バッファ層16の伝導帯底エネルギーが前記GaN系半導体層18より高い半導体装置。 (もっと読む)


121 - 140 / 565