説明

Fターム[5F110GG19]の内容

薄膜トランジスタ (412,022) | チャネル半導体層 (67,982) | 複数層 (1,273)

Fターム[5F110GG19]の下位に属するFターム

超格子 (27)

Fターム[5F110GG19]に分類される特許

101 - 120 / 1,246


【課題】電源の供給を停止しても、記憶している論理状態が消えない記憶装置を提供する。また、該記憶装置を用いることで、電源供給停止により消費電力を抑えることができる信号処理回路を提供する。
【解決手段】第1乃至第4のノードを有する論理回路と、第1のノード、第2のノード、及び第3のノードと接続された第1の制御回路と、第1のノード、第2のノード、及び第4のノードと接続された第2の制御回路と、第1のノード、第1の制御回路、及び第2の制御回路に接続された第1の記憶回路と、第2のノード、第1の制御回路、及び第2の制御回路に接続された第2の記憶回路と、を有する記憶装置である。 (もっと読む)


【課題】高速動作が可能であり、且つ消費電力を低減することが可能な半導体装置を提供する。
【解決手段】レベルシフタ、第1のバッファ、及び第2のバッファと、第1のスイッチ及び第2のスイッチと、第1の端子、第1の端子から入力される信号の反転信号が入力される第2の端子、及び第1のスイッチ及び第2のスイッチの状態を制御するクロック信号が入力される第3の端子と、を備えるラッチ回路を有する。レベルシフタの第1の出力端子は、第1のスイッチを介して、第1のバッファ及び第2のバッファそれぞれの一の入力端子と接続し、レベルシフタの第2の出力端子は、第2のスイッチを介して、第1のバッファ及び第2のバッファそれぞれの他の入力端子と接続する。レベルシフタの第1の入力端子は、第1のバッファの出力端子と接続し、レベルシフタの第2の入力端子は、第2のバッファの出力端子と接続する。 (もっと読む)


【課題】複雑な作製工程を必要とせず、消費電力を抑えることができる信号処理回路の提供する。
【解決手段】入力された信号の位相を反転させて出力する論理素子を2つ(第1の位相反転素子及び第2の位相反転素子)と、第1の選択トランジスタと、第2の選択トランジスタと、を有する記憶素子であって、酸化物半導体層にチャネルが形成されるトランジスタと容量素子との組を2つ(第1のトランジスタと第1の容量素子との組、及び第2のトランジスタと第2の容量素子との組)有する。そして、信号処理回路が有する記憶装置に上記記憶素子を用いる。例えば、信号処理回路が有するレジスタ、キャッシュメモリ等の記憶装置に上記記憶素子を用いる。 (もっと読む)


【課題】複層のゲート絶縁層を備えたグラフェン電子素子を提供する。
【解決手段】グラフェンチャネル層とゲート電極との間に、有機物絶縁層と無機物絶縁層とからなる複層のゲート絶縁層を備えるグラフェン電子素子である。有機物絶縁層は、グラフェンチャネル層に不純物が吸着することを抑制して、グラフェンチャネル層の本来の特性を維持する。前記有機物絶縁層は、前記無機物絶縁層と前記グラフェンチャネル層との間に配置される。前記有機物絶縁層は、フッ素系高分子を含む。 (もっと読む)


【課題】絶縁破壊耐性に優れた化合物半導体積層構造を備えて基板の絶縁破壊の十分な抑止を実現し、ピンチオフ状態とする際にもリーク電流が極めて少ない信頼性の高い化合物半導体装置を実現する。
【解決手段】Si基板1上に形成された化合物半導体積層構造2は、その厚みが10μm以下であって、AlNからなる厚い第1のバッファ層を有しており、III族元素(Ga,Al)の総原子数のうち、Al原子の比率が50%以上とされ、換言すれば、V族元素のNとの化学結合(Ga−N,Al−N)の総数のうち、Al−Nが50%以上とされる。 (もっと読む)


【課題】薄膜トランジスタ、薄膜トランジスタパネル、及びこれらを製造する方法に関する。
【解決手段】薄膜トランジスタは、ゲート電極、ゲート絶縁膜、上記ゲート絶縁膜上に形成された酸化物半導体層、及び上記酸化物半導体層上に相互に離隔して形成されたドレーン電極及びソース電極を含む。上記ドレーン電極は、上記酸化物半導体層上に形成された第1のドレーン副電極及び上記第1のドレーン副電極上に形成された第2のドレーン副電極を含む。上記ソース電極は、上記酸化物半導体層上に形成された第1のソース副電極及び上記第1のソース副電極上に形成された第2のソース副電極を含む。上記第1のドレーン副電極及び上記第1のソース副電極は、ガリウム亜鉛酸化物(GaZnO)を含み、上記第2のドレーン副電極及び上記第2のソース副電極は、金属原子を含む。 (もっと読む)


【課題】ソース電極およびドレイン電極と有機半導体層とにおける電荷注入効率の向上と性能の確保とを両立させることが可能な薄膜トランジスタを提供する。
【解決手段】薄膜トランジスタは、エッチングガスと反応可能な金属元素および半金属元素のうちの少なくとも一方を含む金属含有材料により形成された有機半導体層と、互いに離間されたソース電極およびドレイン電極と、有機半導体層とソース電極およびドレイン電極とが重なる領域において有機半導体層とソース電極およびドレイン電極との間に挿入され、エッチングガスと反応可能な金属元素および半金属元素のうちの少なくとも一方を含まない非金属含有材料により形成された有機導電層とを備える。 (もっと読む)


【課題】従来のDRAMは、データを保持するために数十ミリ秒間隔でリフレッシュをしなければならず、消費電力の増大を招いていた。また、頻繁にトランジスタがオン・オフするのでトランジスタの劣化が問題となっていた。この問題は、メモリ容量が増大し、トランジスタの微細化が進むにつれて顕著なものとなっていた。また、トランジスタの微細化を進めて集積化を図っても、メモリ容量を増加させるためには、半導体装置の面積が大きくなるといった問題があった。
【解決手段】酸化物半導体を有するトランジスタを用い、ゲート電極用のトレンチと、素子分離用のトレンチを有するトレンチ構造のトランジスタとする。また、トレンチ構造の酸化物半導体を有するトランジスタにより、半導体装置の記憶素子を構成し、該記憶素子を複数積層することで、半導体装置の回路面積を縮小することができる。 (もっと読む)


【課題】半導体装置を小型化する。また、メモリセルを有する半導体装置の駆動回路の面積を縮小する。
【解決手段】少なくとも第1の半導体素子を有する素子形成層と、素子形成層上に設けられた第1の配線と、第1の配線上に設けられた層間膜と、層間膜を介して第1の配線と重畳する第2の配線と、を有し、第1の配線と、層間膜と、第2の配線と、は、第2の半導体素子を構成し、第1の配線と、第2の配線と、は、同電位が供給される配線である半導体装置である。 (もっと読む)


【課題】新規のラッチ回路を提供すること。
【解決手段】ラッチ回路は、酸化物半導体(OS)によってチャネル領域が形成されるトランジスタ10を有し、出力端子(Q端子)並びにトランジスタ10のソース及びドレインの一方に電気的に接続され、且つトランジスタ10がオフ状態となることによって浮遊状態となるノード11においてデータを保持する。なお、当該酸化物半導体は、シリコンよりもバンドギャップが広く、真性キャリア密度がシリコンよりも低い。このような酸化物半導体によってトランジスタのチャネル領域が形成されることで、オフ電流(リーク電流)が極めて低いトランジスタを実現することができる。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】ワイドギャップ半導体、例えば酸化物半導体を含むメモリセルを用いて構成された半導体装置であって、メモリセルからの読み出しのために基準電位より低い電位を出力する機能を有する電位切り替え回路を備えた半導体装置とする。ワイドギャップ半導体を用いることで、メモリセルを構成するトランジスタのオフ電流を十分に小さくすることができ、長期間にわたって情報を保持することが可能な半導体装置を提供することができる。 (もっと読む)


【課題】待機電力を十分に低減した新たな半導体装置を提供することを目的の一とする。
【解決手段】第1の電源端子と、第2の電源端子と、酸化物半導体材料を用いたスイッチ
ングトランジスタと、集積回路と、を有し、前記第1の電源端子と、前記スイッチングト
ランジスタのソース端子またはドレイン端子の一方は電気的に接続し、前記スイッチング
トランジスタのソース端子またはドレイン端子の他方と、前記集積回路の端子の一は電気
的に接続し、前記集積回路の端子の他の一と、前記第2の電源端子は電気的に接続した半
導体装置である。 (もっと読む)


【課題】大電力の制御を行う、高耐圧の半導体装置を提供する。
【解決手段】ゲート電極と、ゲート電極上のゲート絶縁層と、ゲート絶縁層上の、ゲート電極と重畳する酸化物半導体層と、酸化物半導体層と接し、端部をゲート電極と重畳するソース電極及びドレイン電極と、を有し、ゲート電極と酸化物半導体層が重畳する領域において、ゲート絶縁層は、ドレイン電極と端部を重畳する第1の領域と、前記第1の領域と隣接する第2の領域と、を有し、第1の領域の静電容量は第2の領域の静電容量より小さいトランジスタを提供すること。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供する。
【解決手段】酸化物半導体を用いたトランジスタ(より広義には、十分にオフ電流が小さいトランジスタ)を用いた記憶回路と、酸化物半導体以外の材料を用いたトランジスタ(換言すると、十分な高速動作が可能なトランジスタ)を用いた駆動回路などの周辺回路と、を一体に備える半導体装置とする。また、周辺回路を下部に設け、記憶回路を上部に設けることで、半導体装置の面積の縮小化及び小型化を実現することができる。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供する。また、新たな構造の半導体装置の高集積化を図り、単位面積あたりの記憶容量を増加させる。
【解決手段】多値書き込みを行う半導体装置、及び半導体装置の駆動方法において、酸化物半導体層を含むトランジスタを用いたメモリセルに書き込みを行う書き込みトランジスタのオンオフを制御する信号線を、ビット線に沿うように配置し、読み出し動作時に容量素子に与える電圧を書き込み時にも利用して、多値書き込みを行う。トランジスタのオフ電流を十分に小さくすることができるワイドギャップ半導体である酸化物半導体材料を用いることで、長期間にわたって情報を保持することが可能である。 (もっと読む)


【課題】半導体集積回路における消費電力を低減すること。また、半導体集積回路における動作の遅延を低減すること。
【解決手段】記憶回路が有する複数の順序回路のそれぞれにおいて、酸化物半導体によってチャネル形成領域が構成されるトランジスタと、該トランジスタがオフ状態となることによって一方の電極が電気的に接続されたノードが浮遊状態となる容量素子とを設ける。なお、酸化物半導体によってトランジスタのチャネル形成領域が構成されることで、オフ電流(リーク電流)が極めて低いトランジスタを実現することができる。そのため、記憶回路に対して電源電圧が供給されない期間において当該トランジスタをオフ状態とすることで、当該期間における容量素子の一方の電極が電気的に接続されたノードの電位を一定又はほぼ一定に保持することが可能である。その結果、上述した課題を解決することが可能である。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供する。
【解決手段】ワイドギャップ半導体、例えば酸化物半導体を含むメモリセルを用いて構成された半導体装置であって、メモリセルからの読み出しのために基準電位より低い電位を出力する機能を有する電位切り替え回路を備えた半導体装置とする。ワイドギャップ半導体を用いることで、メモリセルを構成するトランジスタのオフ電流を十分に小さくすることができ、長期間にわたって情報を保持することが可能な半導体装置を提供することができる。 (もっと読む)


【課題】オフ電流を低減した優れた特性を有する薄膜トランジスタを作製する。
【解決手段】少なくとも微結晶半導体領域及び非晶質半導体領域が積層する半導体膜を有する逆スタガ型の薄膜トランジスタにおいて、半導体膜上に導電膜及びエッチング保護膜を積層形成し、エッチング保護膜上にマスクを形成し、エッチング保護膜、導電膜及び非晶質半導体領域の一部をエッチングする第1のエッチング処理の後、マスクを除去する。次に、上記エッチングされたエッチング保護膜をマスクとして、露出した非晶質半導体領域及び微結晶半導体領域の一部をドライエッチングする第2のエッチング処理により、微結晶半導体領域の一部を露出させ、バックチャネル領域を形成する。 (もっと読む)


【課題】生産性の高い新たな半導体材料を用いた大電力向けの半導体装置を提供すること
を目的の一とする。または、新たな半導体材料を用いた新たな構造の半導体装置を提供す
ることを目的の一とする。
【解決手段】第1の結晶性を有する酸化物半導体膜及び第2の結晶性を有する酸化物半導
体膜が積層された酸化物半導体積層体を有する縦型トランジスタ及び縦型ダイオードであ
る。当該酸化物半導体積層体は、結晶成長の工程において、酸化物半導体積層体に含まれ
る電子供与体(ドナー)となる不純物が除去されるため、酸化物半導体積層体は、高純度
化され、キャリア密度が低く、真性または実質的に真性な半導体であって、シリコン半導
体よりもバンドギャップが大きい。 (もっと読む)


【課題】書き込み回数に制限がなく、消費電力が低く、記憶内容(電荷)の保持特性が改善され、かつ小型化に適した構造の半導体装置および、当該半導体装置を備える、消費電力が低く、記憶内容(電荷)の保持特性が改善された記憶装置を提供する。
【解決手段】半導体装置の有するトランジスタの半導体層として酸化物半導体を用いることで、ソースとドレイン間のリーク電流を低減できるため、半導体装置および当該半導体装置を備える記憶装置の消費電力低減、保持特性の改善を達成できる。また、トランジスタのドレイン電極、半導体層およびドレイン電極と重なる第1の電極により容量素子を形成し、容量素子と重なる位置でゲート電極を上層へ取り出す構造とした。これにより、半導体装置および当該半導体装置を備える記憶装置を小型化できる。 (もっと読む)


101 - 120 / 1,246