説明

Fターム[5F136CC20]の内容

半導体又は固体装置の冷却等 (35,223) | 相変化冷媒による冷却 (1,553) | ヒートパイプ (1,120) | ヒートパイプへの送風手段 (73)

Fターム[5F136CC20]に分類される特許

1 - 20 / 73



【課題】閉鎖型電力変換ユニットの内部の空気温度が所定値を超えることがないようにする。
【解決手段】電力半導体11の熱を、冷却体20、電動機付きポンプ25によって循環される冷媒に移し、且つ、閉鎖型電力変換ユニット10内の空気に放熱された電力変換器制御回路12等の熱を、冷却体20に熱的に接続された吸熱フィン21で集熱して冷媒に移し、外部の放熱器23で放熱する冷却システムにおいて、循環冷媒の温度Twに基づいて、閉鎖型電力変換ユニット10内の空気温度を算出し、算出した空気温度と設定温度とから角度指令値を演算し、三方弁制御回路30がその演算結果を指令値として、循環冷媒を放熱器23およびバイパス配管26に分配する三方弁27の角度を駆動制御することで、閉鎖型電力変換ユニット10内の空気温度を所定値に保つようにする。 (もっと読む)


【課題】信頼性を向上することができる電子機器を提供する。
【解決手段】電子機器は、プリント回路板24、ヒートパイプ27、ファンユニット26、および固定部31を具備した。ヒートパイプ27は、第1の回路部品25に物理的に固定されるとともに熱的に接続された第1の端部27Aと、第1の端部27Aと反対側の第2の端部27Bと、を有する。ファンユニット26は、ヒートパイプ27の第2の端部27Bの近傍に設けられるとともに第2の端部27Bを冷却する。固定部31は、第1の回路部品25とは異なる箇所でヒートパイプ27の位置を固定する。 (もっと読む)


【課題】小型化を図ることができる電子機器を提供する。
【解決手段】一つの実施形態によれば、電子機器は、筐体と、前記筐体に収容された第1放熱部と、前記筐体に収容された第2放熱部と、前記第1放熱部に熱接続された第1ヒートパイプと、前記第1ヒートパイプと交差した部分を有し、前記第2放熱部に熱接続された第2ヒートパイプと、前記第1放熱部及び前記第2放熱部の少なくとも一方に風を送るファンと、を備える。 (もっと読む)


【課題】コストの上昇及び重量の増加を抑え、簡単な構成で、放熱体に付着した塵埃を除去することができる放熱ユニットを搭載した電子機器を提供する。
【解決手段】動作時に発熱するCPUを含む電子部品が収容された筐体と、CPUからの熱が伝達される複数のフィンを有する放熱体37と、放熱体37に空気を送るファン31とを有し、放熱体37に伝達されたCPUからの熱を、ファン31からの空気と熱交換させて、この加温された空気を筐体の外部に放出する放熱ユニット30とを備えたノートパソコン1である。放熱体37は、ファン31の排気口32bに密着させて配置されている。ファン31のファンケース32には、排気口32bとファン本体33との間に位置して開口部35が形成されている。放熱体37の排気面には、当該排気面を開閉する第1のシャッタ手段39が設けられている。 (もっと読む)


【課題】コストの上昇及び重量の増加を抑え、簡単な構成で、放熱体に付着した塵埃を除去することができる放熱ユニットを搭載した電子機器を提供する。
【解決手段】動作時に発熱するCPUを含む電子部品が収容された筐体と、CPUからの熱が伝達される複数のフィンを含む放熱体37と放熱体37に空気を送るファン31とを有する放熱ユニットを搭載したノートパソコンである。ファン31の排気口32bと放熱体37のファン31に対向する側の面37bとの間に両者を連通するように設けられ、少なくとも下面が開口された連通路35と、、ファン31のファンケース32に、排気口32bとファン本体33との間に位置して形成された開口部32cと、開口部32cと放熱体37とを連通するダクト36とを備えている。 (もっと読む)


【課題】フィンへの塵埃の付着を防止して発熱部品からの熱の放熱効率を低下させない放熱ユニットを備えた電子機器を得る。
【解決手段】動作時に発熱する発熱部品24を含む電子部品が収容された筐体20aと、互いに主面が対向するように所定の間隙を介して配列された複数のフィン36を備えた、発熱部品からの発熱が伝達される放熱体35と、放熱体の複数のフィンの間隙に排気口から冷却風を送風するファン31とを備え、放熱体の複数のフィンは、配列方向の両端部に配置された第1のフィン36Aと配列方向の中間部に配置された第2のフィン36Bとを含み、第1のフィンは、ファン側の端部が、その長さ方向の全長にわたって排気口の放熱体側端面との間隔が一定となるように形成され、第2のフィンは、ファン側の端部が、その長さ方向の少なくとも一方の端部において、排気口の放熱体側端面との間隔が広がるように形成されている。 (もっと読む)


【課題】発熱量の異なる発熱素子が複数実装されても、各発熱素子間の温度が均一化され、冷却されにくい発熱素子の発生を防止できる冷却装置を提供することを目的とする。
【解決手段】発熱素子に熱的に接続できる受熱ブロックと、前記受熱ブロックに熱的に接続された複数の第1熱伝導部材と、前記複数の第1熱伝導部材に熱的に接続された放熱フィンとを備え、前記受熱ブロックの表面に対して平行な方向に冷却風の流れが設定された冷却装置であって、前記複数の第1熱伝導部材が第2熱伝導部材と熱的に接続され、該第2熱伝導部材を介して前記複数の第1熱伝導部材が相互に熱的に接続されていることを特徴とする冷却装置。 (もっと読む)


【課題】放熱面積を増やさなくても、冷却風の風上側の冷却能力と冷却風の風下側の冷却能力ともに優れ、被冷却体である発熱素子を複数実装しても、その温度差を低減できる冷却装置を提供する。
【解決手段】発熱素子に熱的に接続できる受熱ブロック2と、受熱ブロック2に熱的に接続された熱伝導部材と、前記熱伝導部材に熱的に接続された放熱フィン5、5’を複数有する放熱フィン群6とを備え、受熱ブロック2の表面に対して平行な方向に冷却風の流れが設定される冷却装置1であって、放熱フィン群6のうち、前記冷却風の風上側の部位と風下側の部位との中間部は、前記冷却風の風上側の部位の放熱フィンピッチ及び前記冷却風の風下側の部位の放熱フィンピッチよりも小さい放熱フィンピッチを備えている。 (もっと読む)


【課題】ヒートシンククーラによって冷却される発熱体とは別の発熱体を効率的に冷却する。
【解決手段】冷却ファン2と、冷却ファン2の下流側に設けられているとともに第一の伝熱管4と熱的に接続され、第一の伝熱管内を流れる熱媒体と送風空気とを熱交換するヒートシンク本体部3と、冷却ファン2からヒートシンク本体部3へ至る流路の外側に設けられているとともに第一の伝熱管4に連通する第二の伝熱管5と熱的に接続され、第一の発熱体21からの熱を第二の伝熱管5内の熱媒体に熱伝導させる第一の熱伝導体6と、第一の熱伝導体6および第二の伝熱管5の少なくとも一方の方向へ冷却ファン2から送風空気を導く整流板9と、を有するヒートシンククーラ1。 (もっと読む)


【課題】ヒート・シンクの電位を基準電位に接近させて塵埃の堆積を抑制する。
【解決手段】携帯式コンピュータ100は、システム筐体105に放熱ユニット200を収納する。放熱ユニットは、CPU121の熱をヒート・パイプ201およびヒート・シンク209を通じて放熱する。放熱ユニット200は、ネジ206a、206dだけで金属フレーム111に結合される。ヒート・シンク209はマザー・ボード113上の帯電体325により静電誘導で電位が上昇する。ヒート・シンクはリード線317でグランド・プレーン321、筐体327電源ジャック311のグランド端子を通じてAC/DCアダプタに接続され帯電した電荷を中和する。 (もっと読む)


【課題】省スペース化が図られるとともに、複数の半導体素子が偏りなく冷却される半導体素子の冷却構造、を提供する。
【解決手段】半導体素子の冷却構造は、ヒートパイプ70(70A)と、ヒートパイプ75(75A)と、半導体素子51と、半導体素子51と発熱の特性が異なる半導体素子61と、空冷用フィン90とを備える。ヒートパイプ70(70A)は、端部71および端部72を有する。ヒートパイプ75(75A)は、端部71と対向して配置される端部76と、端部72に対向して配置される端部77とを有する。半導体素子51は、端部71および端部76の間に設けられる。半導体素子61は、端部72および端部77の間に設けられる。空冷用フィン90は、端部71と端部72との間および端部76と端部77との間に配置され、ヒートパイプ70(70A)およびヒートパイプ75(75A)に設けられる。 (もっと読む)


【課題】赤外線のセンサの低温および高温動作の間の熱の管理を改善する。
【解決手段】赤外線のセンサは、赤外線のレンズと、赤外線の検知器と、検知器に接続され、出力赤外線画像信号を与える処理および制御回路と、センサから余分な熱を放散させる熱抽出装置と、処理および制御回路の回路基板17a,17b,17c,17dを熱抽出装置に熱的につなぐ少なくとも1つの第1のヒートパイプ13a,13b、および、レンズを処理および制御回路に熱的につなぐ少なくとも1つの第2のヒートパイプ14を有する受動的な熱分配機構と、を有している。 (もっと読む)


【課題】
発熱量の変動の大きい被冷却素子への適用が可能なループ型ヒートパイプの冷却技術を提供する。
【解決手段】
発熱体から受熱して作動流体を蒸発させる蒸発器と、配管に取り付けられたフィンを備え、外部に放熱して作動流体の蒸気を凝縮させる凝縮器と、凝縮部に沿って並行に分割設置させた複数の冷却ファンとを備えたループ型ヒートパイプと、複数の冷却ファンの回転数に傾斜を持たせ、蒸発器の発熱量に応じて凝縮部の出口側から優先的に凝縮部の冷却を行う制御装置と、を有することを特徴とする冷却システム。 (もっと読む)


【課題】高速チャネル部両端の温度変動を同方向へ導くことができる冷却装置を提供する。
【解決手段】発熱部品の熱を外に放熱して前記発熱部品を冷却する冷却フィンと、前記発熱部品の一つである第1の半導体モジュールと、前記発熱部品の一つである第2の半導体モジュールと、前記第1の半導体モジュールを冷却する第1のヒートシンクと、前記第2の半導体モジュールを冷却する第2のヒートシンクと、前記冷却フィンと前記第1のヒートシンクとを熱的に結合する第1のヒートパイプと、前記第1のヒートシンクと第2のヒートシンクとを熱的に結合する第2のヒートパイプとを含み、前記第1の半導体モジュールの機能上限のジャンクション温度は前記第2の半導体モジュールの機能上限のジャンクション温度よりも低く、また前記第1の半導体モジュールの発熱は前記第2の半導体モジュールの発熱よりも大きい冷却装置。 (もっと読む)


【課題】本発明は、冷却効率の低下を抑制することができる電子機器を提供する。
【解決手段】電子機器は、排気口が設けられた底壁と、閉塞された領域を有する周壁とを含む筐体と、前記筐体に収納されたプリント配線板と、前記閉塞された領域に向かって送風するファンと、前記筐体の内側から前記排気口を覆う位置に設けられ、前記閉塞された領域と前記ファンとの間に位置した放熱部材と、を備え、前記ファンから前記閉塞された領域に向かって送風された空気は前記ファンの外側で方向転換されて前記排気口から排気される。 (もっと読む)


【課題】ヒートパイプの受熱部および放熱部の熱抵抗を低く抑えることができるヒートシンクを提供する。
【解決手段】受熱体2と、前記受熱体2に形成され、円形状の断面形状を有する一つまたは複数個の第1孔11と、前記第1孔11に嵌合される1本または複数本のヒートパイプ4とを備えることで、ヒートパイプ4の外面の円周方向のほぼ全面で熱接続を行うとともに、潰し加工することによるヒートパイプ4の内容積の減少を防ぐことができ、小さな熱抵抗で受熱ブロック2からヒートパイプ4に熱を伝えることができる構成とした。 (もっと読む)


【課題】電力変換装置のパワー半導体を効率的に冷却し、装置の小型化を図る。
【解決手段】複数のパワー半導体素子,受熱部材,複数のヒートパイプおよび複数の放熱フィンを有し、前記複数のパワー半導体素子は前記受熱部材の一方の側に取り付けられ、前記複数のヒートパイプは前記受熱部材の他方の側に取り付けられ、前記複数のヒートパイプの少なくとも一部は前記受熱部から前記受熱部材の外側に立ち上げられた放熱部を持った電力変換装置において、前記ヒートパイプの受熱部材に取り付けられた部分の長手方向が冷却風の流れ方向と略同じ方向に設置されたヒートパイプと、前記ヒートパイプの受熱部材に取り付けられた部分の長手方向が冷却風の流れ方向と略垂直の方向に設置されたヒートパイプとを備える構造とした。 (もっと読む)


【課題】
本発明はフィンセットユニット、カバー、第一ファン、第二ファン、および制御回路を含む、埃除去機能を備えたダブルファン式放熱装置を提供する。
【解決手段】
制御回路は、稼動信号を受信すると、第一、第二ファンを始動させ、また埃除去の信号を受信すると、後述する(a)、(b)のステップをそれぞれ一定時間実施する。(a)のステップは、第一ファンを始動させ、同時に第二ファンを止めることを含む。(b)のステップは、第二ファンを始動させ、同時に第一ファンを止めることを含む。これにより第一、第二ファンは交互に埃を除去させ、フィンセットユニットに対する埃除去と放熱を行うことができる。 (もっと読む)


【課題】小型軽量で汎用性の高い電力変換装置を提供することを目的とする。
【解決手段】電力変換回路を構成する複数の半導体素子1200a,1200bと、冷却装置と、を備える電力変換装置であって、半導体素子の取り付け面を備える冷却モジュール100a,100bを、冷却風1301が流れる方向に対して直列または並列に、複数の冷却モジュール100a,100bの構成を少なくとも一つは異ならせて、複数個を組み合わせて冷却装置を構成することにより、半導体素子1200a,1200bの発熱量や発熱密度に応じて、素子許容温度上限を満たすことができ、冷却装置の小型軽量化を可能とする。 (もっと読む)


1 - 20 / 73