説明

Fターム[5F140BD01]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート絶縁膜 (8,730) | 2層 (822)

Fターム[5F140BD01]に分類される特許

41 - 60 / 822


【課題】急峻なS値特性を有するとともに、ソース/ドレイン領域が同じ導電型となる対称構造を有する電界効果トランジスタを提供する。
【解決手段】本実施形態による電界効果トランジスタは、半導体層と、前記半導体層に離間して設けられたソース領域およびドレイン領域と、前記ソース領域と前記ドレイン領域との間の前記半導体層上に設けられたゲート絶縁膜と、前記ゲート絶縁膜上に設けられたゲート電極と、前記ソース領域および前記ドレイン領域側の前記ゲート電極の少なくとも一方の側面に設けられた高誘電体のゲート側壁と、を備え、前記ソース領域および前記ドレイン領域は前記ゲート電極の対応する側面から離れている。 (もっと読む)


【課題】ゲート絶縁膜界面材料としてGeO2 を用いた場合においてもGeO2 層の劣化を抑制することができ、素子の信頼性向上をはかると共に、プロセスの歩留まり向上をはかる。
【解決手段】本発明の実施形態による電界効果トランジスタは、Geを含む基板10上の一部に設けられた、少なくともGeO2 層を含むゲート絶縁膜20と、ゲート絶縁膜20上に設けられたゲート電極30と、ゲート電極30下のチャネル領域を挟んで前記基板に設けられたソース/ドレイン領域50と、前記ゲート絶縁膜20の両側部に形成された窒素含有領域25と、を備えた。 (もっと読む)


【課題】高電子移動度トランジスタの耐圧を高くする。
【解決手段】第1の高電子移動度トランジスタ4と、負の閾値電圧を有する第2の高電子移動度トランジスタ6とを有し、第2の高電子移動度トランジスタ6のソースS2は、第1の高電子移動度トランジスタ4のゲートG1に接続され、第2の高電子移動度トランジスタ6のゲートG2は、第1の高電子移動度トランジスタ4のソースS1に接続されている。 (もっと読む)


【課題】 TiC膜を含む半導体構造を形成する方法を提供する。
【解決手段】 高誘電率(k)の誘電体14および界面層12を含む積層体を基板10の表面上に設けるステップと、Heによって希釈された炭素(C)源およびArを含む雰囲気において、Tiターゲットをスパッタすることにより、前記積層体上にTiC膜16を形成するステップとを含む、半導体構造を形成する方法である。 (もっと読む)


【課題】シリコンカーバイド領域を含む半導体基板上に形成された金属-絶縁膜-半導体構造を有する半導体装置(電界効果型トランジスタ(MISあるいはMOSFET))に対して、高温に加熱された熱触媒体表面での重水素を含んだガスの熱触媒作用によって生成された活性化した重水素を用いることにより、600°C以下の低温においてゲート絶縁膜/シリコンカーバイド半導体界面近傍に存在するダングリングボンドの重水素終端を図り、界面準位密度の低い良好なゲート酸化膜/半導体界面が形成された半導体装置、およびそれを形成する重水素処理装置およびその作製方法を提供する。
【解決手段】半導体基板とゲート絶縁膜、層間絶縁膜、配線層、保護絶縁膜等の半導体装置に形成される膜又は層の界面近傍での重水素元素濃度が1x1019cm-3以上であることを特徴とする金属−絶縁膜−半導体(MIS)構造を有する半導体装置。 (もっと読む)


【課題】特性の良好な半導体装置を形成する。
【解決手段】本発明は、pチャネル型MISFETをpMIS形成領域1Aに有し、nチャネル型MISFETをnMIS形成領域1Bに有する半導体装置の製造方法であって、HfON膜5上にAl膜8aを形成する工程と、Al膜上にTiリッチなTiN膜7aを形成する工程と、を有する。さらに、nMIS形成領域1BのTiN膜およびAl膜を除去する工程と、nMIS形成領域1BのHfON膜5上およびpMIS形成領域1AのTiN膜7a上にLa膜8bを形成する工程と、La膜8b上にNリッチなTiN膜7bを形成する工程と、熱処理を施す工程とを有する。かかる工程によれば、pMIS形成領域1Aにおいては、HfAlON膜のN含有量を少なくでき、nMIS形成領域1Bにおいては、HfLaON膜のN含有量を多くできる。よって、eWFを改善できる。 (もっと読む)


【課題】n型MOSトランジスタ及びp型MOSトランジスタのそれぞれに共通のゲート電極材料を用い、且つそれぞれの閾値電圧が適切な値に調整された半導体装置を実現できるようにする。
【解決手段】半導体装置は、第1トランジスタ11及び第2トランジスタ12を備えている。第1トランジスタ11は、第1ゲート絶縁膜131と、第1ゲート電極133とを有し、第2トランジスタ12は、第2ゲート絶縁膜132と、第2ゲート電極134とを有している。第1ゲート絶縁膜131及び第2ゲート絶縁膜132は、第1絶縁層151及び第2絶縁層152を含む。第1ゲート電極133及び第2ゲート電極134は、断面凹形の第1導電層155及び該第1導電層155の上に形成された第2導電層156を含む。第1絶縁層151及び第2絶縁層152は平板状であり、第1ゲート絶縁膜131は、仕事関数調整用の第1元素を含んでいる。 (もっと読む)


【課題】バッファ層の結晶成長時に高抵抗化の不純物をドーピングすることなく上層の化合物半導体の結晶品質を保持するも、バッファ層を高抵抗化してオフリーク電流を確実に抑制し、信頼性の高い高耐圧の化合物半導体装置を実現する。
【解決手段】化合物半導体積層構造2の裏面から、化合物半導体積層構造2の少なくともバッファ層2aに不純物、例えばFe,C,B,Ti,Crのうちから選ばれた少なくとも1種類を導入し、バッファ層2aの抵抗値を高くする。 (もっと読む)


【課題】nチャネル型電界効果トランジスタとpチャネル型電界効果トランジスタを有する半導体装置において、nチャネル型電界効果トランジスタ、pチャネル型電界効果トランジスタ共にドレイン電流特性に優れた半導体装置を実現する。
【解決手段】nチャネル型電界効果トランジスタ10と、pチャネル型電界効果トランジスタ30とを有する半導体装置において、nチャネル型電界効果トランジスタ10のゲート電極15を覆う応力制御膜19には、膜応力が引張応力側の膜を用いる。pチャネル型電界効果トランジスタ30のゲート電極35を覆う応力制御膜39には、膜応力が、nチャネル型トランジスタ10の応力制御膜19より、圧縮応力側の膜を用いることにより、nチャネル型、pチャネル型トランジスタの両方のドレイン電流の向上が期待できる。このため、全体としての特性を向上させることができる。 (もっと読む)


【課題】良好なノーマリ・オフ動作を可能とすることに加え、アバランシェ耐量が大きく、外部のダイオードを接続することを要せず、確実に安定動作を得ることができる信頼性の高い高耐圧のHEMTを得る。
【解決手段】化合物半導体積層構造2に形成された電極用リセス2Cを、ゲート絶縁膜6を介して電極材料で埋め込むようにゲート電極7を形成すると共に、化合物半導体積層構造2に形成された電極用リセス2Dを、少なくとも電極用リセス2Dの底面で化合物半導体積層構造2と直接的に接するように電極材料で埋め込み、化合物半導体積層構造2とショットキー接触するフィールドプレート電極8を形成する。 (もっと読む)


【課題】半導体装置に形成される絶縁膜の付着力を高め歩留りを向上させる。
【解決手段】基板10の上方に形成された半導体層20〜23と、前記半導体層20〜23上に形成された絶縁膜31,32と、前記絶縁膜上31,32に形成された電極41と、を有し、前記絶縁膜31,32は、前記電極41の側における膜応力よりも、前記半導体層20〜23の側における膜応力が低いことを特徴とする半導体装置により上記課題を解決する。 (もっと読む)


【課題】用途によって異なるしきい値電圧を有するトランジスタを有する半導体装置、及び工程数の増加を抑えた当該半導体装置を製造する方法を提供する。
【解決手段】半導体装置100は、半導体基板101上に形成された第1のゲート絶縁膜110aと、第1のゲート絶縁膜110a上に形成された第1のゲート電極109aと、第1のゲート絶縁膜110aの側面上及び第1のゲート電極109aの側面上に形成された第1のサイドウォール絶縁膜140aとを有する第1導電型の第1のMISFET150を備えている。第1のサイドウォール絶縁膜140aの少なくとも一部には、第1のゲート絶縁膜110aに正または負の固定電荷を誘起するための元素が含まれている。 (もっと読む)


【課題】半導体層とゲート電極との間に絶縁膜が形成された半導体装置の信頼性を高める。
【解決手段】基板の上方に形成された半導体層と、前記半導体層上に形成された絶縁膜と、前記絶縁膜上に形成された電極と、を有し、前記絶縁膜は炭素を主成分とするアモルファス膜を含むものであることを特徴とする半導体装置により上記課題を解決する。 (もっと読む)


【課題】半導体装置の特性を向上させる。
【解決手段】LDMOSと、LDMOSのソース領域と電気的に接続されるソースプラグP1Sと、ソースプラグP1S上に配置されるソース配線M1Sと、LDMOSのドレイン領域と電気的に接続されるドレインプラグP1Dと、ドレインプラグP1D上に配置されるドレイン配線M1Dと、を有する半導体装置のソースプラグP1Sの構成を工夫する。ドレインプラグP1Dは、Y方向に延在するライン状に配置され、ソースプラグP1Sは、Y方向に所定の間隔を置いて配置された複数の分割ソースプラグP1Sを有するように半導体装置を構成する。このように、ソースプラグP1Sを分割することにより、ソースプラグP1SとドレインプラグP1D等との対向面積が低減し、寄生容量の低減を図ることができる。 (もっと読む)


【課題】微細化を達成するとともに、ゲート電極等の信頼性を確保する半導体装置の製造方法を提供する。
【解決手段】N型MISトランジスタ及びP型MISトランジスタのそれぞれのゲート形成領域において、N型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第1の金属含有膜F1を、P型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第3の金属含有膜F3を形成し、第1の金属含有膜F1上及び第3の金属含有膜F3上に第2の金属含有膜F2を形成し、N型MISトランジスタのゲート絶縁膜F0に接する第1の金属含有膜F1の仕事関数がP型MISトランジスタのゲート絶縁膜F0に接する第3の金属含有膜F3の仕事関数よりも小さい。 (もっと読む)


【課題】工程を簡素化して歩留まりを向上すると共に、安定した形状の電極を再現性よく得ることができる半導体装置の製造方法を提供する。
【解決手段】第1のレジスト膜11と、第1のレジスト膜11の開口よりも小さな開口を有する第2のレジスト膜12とを用いて、SiO絶縁膜10を異方性ドライエッチングによってエッチングして、SiO絶縁膜10にテーパ状の開口部101を形成する。このため、GaN層1を斜めに設置し直してSiO絶縁膜10をエッチングする必要がなく、GaN層1を水平に設置したままSiO絶縁膜10をエッチングすることができ、工程を簡素化できる。 (もっと読む)


【課題】GaNを有する窒化物の上にマイクロ波プラズマを用いてゲート絶縁膜を形成する半導体装置の製造方法を提供する。
【解決手段】GaN層13,AlGaN層14aが積層されたFET構造と、フィールド酸化膜15とゲート電極20との間にかけて、形成されたゲート絶縁膜19bを備える。ゲート絶縁膜19bは、アルミナ24aとシリコン酸化膜24bから構成される二層構造とする。 (もっと読む)


【課題】窒化金属膜から放出される窒素がゲート絶縁膜に到達することを抑制する。
【解決手段】この半導体装置は、半導体基板100、第1ゲート絶縁膜110、シリコン含有第2ゲート絶縁膜122、及び第1ゲート電極を備えている。第1ゲート絶縁膜110は半導体基板100上に形成されており、酸化シリコン又は酸窒化シリコンよりも比誘電率が高い材料から構成されている。シリコン含有第2ゲート絶縁膜122は、第1ゲート絶縁膜110上に形成されている。第1ゲート電極はシリコン含有第2ゲート絶縁膜122上に形成されており、窒化金属層124を有している。第1ゲート絶縁膜110、シリコン含有第2ゲート絶縁膜122、及び窒化金属層124は、pMOSFETの一部を構成している。 (もっと読む)


【課題】半導体装置の特性を劣化させることなく、浅い接合の半導体装置を提供する。
【解決手段】まず、半導体基板上に、ゲート絶縁膜を形成する(s100)。次いで、ゲート絶縁膜上にゲート電極を形成する(s200)。次いで、ゲート電極を形成する工程(s200)の後、第一アニール工程を行う(s300)。次いで、第一アニール工程(s300)の後、ゲート電極の両側における半導体基板に、ポケット領域およびエクステンション領域を構成する不純物注入を行う(s400)。その不純物注入を行う工程(s400)の後、第二アニール工程として、最高アニール温度が1000℃以上で、アニール時間が100ミリ秒以下であるアニールを行う(s700)。 (もっと読む)


【課題】短チャネルでもオフ特性の優れたトランジスタ等の半導体装置を提供する。
【解決手段】ソース102aの周囲をエクステンション領域103aおよびハロー領域105a、ドレイン102bの周囲をエクステンション領域103bおよびハロー領域105bで取り囲むように配置し、また、不純物濃度の低い基板101がソース102a、ドレイン102bと接しない構造とする。さらに、ゲート絶縁物109を介して高仕事関数電極104を設け、基板101の表面近傍にエクステンション領域103aおよびエクステンション領域103bより侵入する電子を排除する。このような構造とすることにより、短チャネルでもチャネル領域の不純物濃度を低下させることができ、良好なトランジスタ特性を得ることができる。 (もっと読む)


41 - 60 / 822