説明

Fターム[5F140BD01]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート絶縁膜 (8,730) | 2層 (822)

Fターム[5F140BD01]に分類される特許

121 - 140 / 822


【課題】電界効果トランジスタにおけるゲート電極の汚染を防止し、かつゲート電極上に形成されるマスク膜の膜厚を薄くする。
【解決手段】基板10上にゲート絶縁膜100を形成する。次いでゲート絶縁膜100上にゲート電極膜120を形成する。ゲート電極膜120の一部上にマスク膜230を形成する。マスク膜230をマスクとしたエッチングによりゲート電極膜120を選択的に除去する。そして、マスク膜230とゲート電極膜120の側面に接するようゲート側壁膜130を形成する。マスク膜230は少なくとも第1膜200、第2膜210、及び第3膜220をこの順に積層した積層膜により構成される。第2膜210は、ゲート側壁膜130に対して第3膜220よりも高いエッチング選択比を有する。第3膜220は、ゲート電極膜120に対して第2膜210よりも高いエッチング選択比を有する。 (もっと読む)


【課題】 高密度で、構造部寸法がより小さく、より正確な形状の半導体構造体及び電子デバイスを提供する。
【解決手段】 炭素ベース材料の上面上に配置された少なくとも一層の界面誘電体材料を含む、半導体構造体及び電子デバイスが提供される。少なくとも一層の界面誘電体材料は、炭素ベース材料のものと同じである、典型的には六方晶短距離結晶結合構造を有し、従って、少なくとも一層の界面誘電体材料が、炭素ベース材料の電子構造を変えることはない。炭素ベース材料のものと同じ短距離結晶結合構造を有する少なくとも一層の界面誘電体材料の存在により、炭素ベース材料と、誘電体材料、導電性材料、又は誘電体材料及び導電性材料の組み合わせを含む、上にある任意の材料層との間の界面結合が改善される。その結果、改善された界面結合が、炭素ベース材料を含むデバイスの形成を容易にする。 (もっと読む)


【課題】ゲート電極が金属窒化膜により構成されるMOSFETにおいて、電流駆動能力の向上を図る。
【解決手段】基板10に、素子形成領域20を分離する素子分離領域50を設ける。次に素子形成領域20上にゲート絶縁膜100を形成する。その後ゲート絶縁膜100上に金属窒化膜により構成される下部ゲート電極膜200を形成する。さらに下部ゲート電極膜200を熱処理する。そして下部ゲート電極膜200上に上部ゲート電極膜220を形成する。 (もっと読む)


【課題】電界効果型トランジスタの閾値電圧を精度よく制御することができ、かつその範囲を広くする。
【解決手段】この半導体装置は、ゲート絶縁膜120及びゲート電極130を有する電界効果型トランジスタ101を備える。ゲート絶縁膜120は、界面層110と高誘電率膜112とを積層した構成を有している。高誘電率膜112は、酸化シリコンより誘電率が高い金属酸化物からなる。そしてゲート絶縁膜120は、高誘電率膜112と界面層110の界面近傍に、窒素を含有する窒素含有層を有している。窒素含有層は高誘電率膜112から界面層110に渡って形成されている。窒素含有層において、窒素の濃度は高誘電率膜112と界面層110の界面が最も高い。 (もっと読む)


【課題】オン抵抗を低減することができるGaN−MISトランジスタ、GaN−IGBT、およびこれらの製造方法を提供する。
【解決手段】ゲート電極(M)16とSiNゲート絶縁膜(I)13と半導体層(GaN)12とのMIS構造を有するGaN−MISトランジスタ150であって、半導体層は、オーミックコンタクト用nGaN領域14が離間した2箇所に形成され、SiNゲート絶縁膜は、2箇所のオーミックコンタクト用nGaN領域の基板反対側表面に熱CVD法により成膜されたSiN膜である。 (もっと読む)


【課題】所望の実効仕事関数(例えば、高い実効仕事関数)を実現し、かつ、EOTが変化しない、またはEOTの変化を低減した金属窒化膜、金属窒化膜を用いた半導体装置、および半導体装置の製造方法を提供すること。
【解決手段】本発明の一実施形態に係る金属窒化膜は、TiとAlとNを含有し、該金属窒化膜のTiとAlとNのモル比率(N/(Ti+Al+N))が0.53以上であり、かつ、上記金属窒化物層のTiとAlとNのモル比率(Ti/(Ti+Al+N))が0.32以下であり、かつ上記金属窒化物層のTiとAlとNのモル比率(Al/(Ti+Al+N))が0.15以下である。 (もっと読む)


【課題】エンハンスメントモードのIII族窒化物トランジスタを提供する。
【解決手段】第1のIII族窒化物体110と第2のIII族窒化物体112との間に形成されているとともに二次元電子ガスを有している伝導チャネルを具えるIII族窒化物トランジスタ100において、伝導チャネルに中断領域を生ぜしめるために電荷を内部に閉じ込めた少なくとも1つのゲート誘電体層125と、伝導チャネルの中断領域を復元するように作用しうるゲート電極123とを具える。 (もっと読む)


【課題】不純物拡散領域の抵抗値のばらつきを抑制しうる半導体装置の製造方法を提供する。
【解決手段】半導体層にドーパント不純物を添加し、0.1秒〜10秒の活性化熱処理を行う。次いで、半導体層にイオン注入を行い、半導体層のドーパント不純物が添加された領域をアモルファス化する。次いで、0.1ミリ秒〜100ミリ秒の活性化熱処理を行い、アモルファス化した半導体層を再結晶化することにより、半導体層にドーパント不純物の拡散領域を形成する。 (もっと読む)


【課題】界面準位を低減しつつ、電荷トラップに起因するヒステリシスを抑制できる半導体装置の構造およびその製造方法を提供する。
【解決手段】半導体装置200は、GaNを含む半導体層101を表面の少なくとも一部に有する基板(半導体基板100)と、半導体層101と接するように半導体基板100上に設けられており、窒素を含まず、Alを含む酸化金属層からなる第1のゲート絶縁層(Al膜114)と、Al膜114上に設けられており、SiおよびOを含む第2のゲート絶縁層(SiO膜116)と、SiO膜116上に設けられたゲート電極118と、を備え、ゲート電極118の下面は、SiO膜116に接しており、Al膜114の膜厚は、SiO膜116の膜厚より薄い。 (もっと読む)


【課題】膜厚測定に用いる標準試料中のLaを含む膜の保管時の安定性を向上させる。
【解決手段】膜厚測定用標準試料100は、シリコン基板101上に設けられたLa含有膜103およびLa含有膜103の上部に設けられてLa含有膜103を覆うとともに金属窒化物を含む保護膜105を含む。これにより、Laを含む膜103の保管時の変質による膜厚変動を効果的に抑制する。このような膜厚測定用標準試料100を用いて、Laを含む膜の膜厚の測定値を補正するステップを含む、膜厚測定方法。 (もっと読む)


【課題】可動ゲート電極の変位を制御可能な可動ゲート型電界効果トランジスタを提供する。
【解決手段】ソース電極17とドレイン電極18との上に導電シールド電極20が配置される可動ゲート型電界効果トランジスタ1とした。そして導電シールド電極20の電位を固定することとした。導電シールド電極20が配置されることにより、可動ゲート15とドレイン電極18またはソース電極17との間に発生する静電力を抑制することができる。 (もっと読む)


【課題】GaN系の窒化物半導体を用いたデバイスのゲートリセス量の制御性を向上することで、閾値電圧の面内均一性を向上することができる窒化物半導体装置を実現できるようにする。
【解決手段】窒化物半導体装置は、基板101上に形成された第1のGaN系半導体からなるバッファ層102と、第2のGaN系半導体からなるキャリア走行層103と、第3のGaN系半導体からなるキャリア供給層104とを備えている。キャリア供給層104の上には第1の絶縁膜105と、アルミニウムを含む第2の絶縁膜106と、第1の絶縁膜105より膜厚が厚い第3の絶縁膜107とが形成されている。ソース電極108及びドレイン電極109は第1の絶縁膜105上に形成されている。ゲート電極110は、リセス構造を含む第2の絶縁膜106及び第3の絶縁膜107上に形成されている。 (もっと読む)


【課題】GaN系半導体/ゲート絶縁膜の界面特性、及び、ゲート絶縁膜の膜質が共に良好である半導体トランジスタを提供する。
【解決手段】半導体トランジスタ11は、GaN系の半導体から成る活性層3と、活性層3上に形成されたゲート絶縁膜とを備える。ゲート絶縁膜は、活性層3上に形成され、Al,HfO,ZrO,La,Yから成る群から選択された1つ以上の化合物を含む第1の絶縁膜6と、第1の絶縁膜6上に形成され、SiOから成る第2の絶縁膜7とを有する。 (もっと読む)


【課題】耐電圧、耐熱性、耐放射線性、及び高速性が優れ、かつ、チャネル領域を短くでき、素子の応答性が高いダイヤモンド半導体素子を高精度で製造できる半導体素子の製造方法を提供する。
【解決手段】第1のダイヤモンド半導体領域1の表面上に、絶縁膜2と多層金属電極層3と犠牲層4とを積層し、犠牲層4上に、局所的にレジスト5をパターン形成する。多層金属電極層3の最上層は、Pt又はPt合金により形成する。そして、レジスト5をマスクとして第1の犠牲層、多層金属電極層及び絶縁膜をエッチングした後、レジスト5を除去して、第1のダイヤモンド半導体領域1上に絶縁膜2と金属電極層3と第1の犠牲層4との積層体をパターン形成する。その後、第1のダイヤモンド半導体領域1上に、不純物の高濃度ドープ層7を形成する。その後、犠牲層4をエッチング除去し、高濃度ドープ層7上に金属電極8を形成する。 (もっと読む)


【課題】メタルゲート電極内に基板面に対して平行な金属とシリコンなどとの境界又はシリサイドとシリコンなどとの境界を含むメタルゲート電極において、トランジスタの接続抵抗が小さく、高速動作時のトランジスタの遅延又はトランジスタ特性のばらつきなどの特性劣化の懸念がなく、且つ、低コストな構造を有する半導体装置を提供する。
【解決手段】半導体装置は、半導体基板101上に、ゲート絶縁膜105と、pMIS用金属材料109又はnMIS用金属材料111と、ゲート電極材料112と、ゲート側壁メタル層122とを備えている。 (もっと読む)


【課題】バリアメタルの膜厚を抑制しながらメタルゲートの拡散性材料が高誘電率誘電体に拡散することを防ぐ。
【解決手段】半導体装置がゲート積層体構造を含む。ゲート積層体構造は、半導体基板5の上に形成された界面層4と、界面層4の上に形成された高誘電率誘電体3と、拡散性材料と不純物金属を含み、高誘電率誘電体の上方に形成されたシリサイドゲート1と、拡散性材料に対するバリア効果を持ち、高誘電率誘電体3とシリサイドゲート1の間に形成されたバリアメタル2とを備えている。不純物金属は、シリサイドゲート1の拡散性材料が高誘電率誘電体に導入されることを防ぐことができるような、拡散性材料に対するバリア効果を有している。 (もっと読む)


【課題】オン動作時には電子移動の抵抗が低く、かつオフ動作時にはゲート電極と2次元電子ガスとのゲートリーク電流が発生しにくいIII族窒化物系へテロ電界効果トランジスタを提供する。
【解決手段】本発明のIII族窒化物系へテロ電界効果トランジスタは、基板と、該基板の上に設けられるキャリア走行層と、該キャリア走行層上に、ヘテロ界面を形成するように設けられる障壁層と、該障壁層上の一部からキャリア走行層の内部まで掘り込まれたリセス構造と、該リセス構造上に設けられる絶縁層と、該絶縁層上に設けられるゲート電極とを含み、キャリア走行層および障壁層はいずれも、III族窒化物半導体からなり、絶縁層は、リセス構造の側面上に形成される側面絶縁層と、リセス構造の底面上に形成される底面絶縁層とからなり、側面絶縁層の厚みは、前記底面絶縁層の厚みよりも厚いことを特徴とする。 (もっと読む)


【課題】低容量且つ高温特性が良好な素子分離領域を有する高速なMIS電界効果トランジスタを提供する。
【解決手段】半導体基板1にウエル領域2が設けられ、ウエル領域2内には上部、下部及び側面にシリコン酸化膜3を有し、内部が空孔4に形成されたトレンチ素子分離領域が選択的に設けられ、トレンチ素子分離領域により画定されたウエル領域2が設けられた半導体基板1上にゲート酸化膜9を介してゲート電極10が設けられ、ゲート電極10の側壁にサイドウォール11が設けられ、ウエル領域2が設けられた半導体基板1には、ゲート電極10に自己整合して低濃度のソースドレイン領域(6、7)及びサイドウォール11に自己整合して高濃度のソースドレイン領域(5、8)が設けられ、高濃度のソースドレイン領域にはそれぞれバリアメタル14を有する導電プラグ15を介してバリアメタル17を有する配線18が接続されている構造からなるMIS電界効果トランジスタ。 (もっと読む)


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法の一部は、大部分が、既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法の一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。様々な効果を達成するようDDCを構成する手法が数多く存在し得るとともに、ここに提示される更なる構造及び方法は、更なる利益を生み出すように単独あるいはDDCとともに使用され得る。
(もっと読む)


【課題】高誘電率ゲート絶縁膜、及び、ゲート電極としてメタル膜を含む半導体装置において、逆短チャネル効果の発生を防止して高性能化を実現する。
【課題手段】半導体装置は、半導体基板101の上に形成されたランタンを含有する高誘電率ゲート絶縁膜102と、高誘電率ゲート絶縁膜102の上に形成されたキャップ膜103と、キャップ膜103の上に形成されたメタル膜104と、メタル膜104の上に形成されたポリシリコン膜105と、高誘電率ゲート絶縁膜102、キャップ膜103、メタル膜104、及びポリシリコン膜105それぞれの両側面に形成されたランタンを含有するゲート側壁絶縁膜106とを備えている。 (もっと読む)


121 - 140 / 822