説明

Fターム[5F140BF43]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 形状、配置 (2,388) | 断面形状 (1,038) | 溝掘りゲート (564)

Fターム[5F140BF43]に分類される特許

101 - 120 / 564


【課題】ゲート電圧の閾値電圧がばらつくことを抑制することができると共に、チャネル抵抗を低減させることができる半導体装置を提供する。
【解決手段】ベース領域4、ソース領域6、ドレイン領域7の不純物濃度を均一とし、第1、第2トレンチ8a、8bをベース領域4よりも浅く形成する。このような半導体装置では、ベース領域4、ソース領域6、ドレイン領域7の不純物濃度が均一とされているため、ゲート電圧の閾値電圧がばらつくことを抑制することができ、また、ソース領域6およびドレイン領域7を深くすることによりチャネル領域を有効に活用でき、チャネル抵抗を低減することができる。さらに、第1、第2トレンチ8a、8bをベース領域4より浅く形成しているため、ベース領域4のうち第1、第2トレンチ8a、8bより深く形成されている部分にはチャネル領域が形成されず、ソース領域6から深さ方向に電流が流れることを抑制することができる。 (もっと読む)


【課題】縦型トランジスタの特性を悪化させることなく縦型トランジスタの設置面積を削減できる高集積化に適した半導体装置およびその製造方法を提供する。
【解決手段】一定の間隔を空けて配置された複数のピラー30が備えられ、複数のピラー30が、縦型トランジスタTのチャネルとして機能する半導体層からなるチャネルピラー1と、不純物拡散層からなり、前記チャネルピラー1の下部に接続されて縦型トランジスタTの一方のソースドレインとして機能する下部拡散層4に電気的に接続された引き上げコンタクトプラグ2とを含む半導体装置とする。 (もっと読む)


【課題】界面準位密度のゲート酸化膜/半導体界面が形成された半導体装置、および作製方法の提供。
【解決手段】半導体基板とゲート絶縁膜、層間絶縁膜、配線層、保護絶縁膜等の半導体装置に形成される膜又は層の界面近傍での重水素元素濃度が1x1019cm-3以上であることを特徴とする金属−絶縁膜−半導体(MIS)構造を有する半導体装置とする。シリコンカーバイド領域を含む半導体基板上に形成された金属-絶縁膜(あるいは酸化膜)-半導体(MISあるいはMOS)構造を有する半導体装置(電界効果型トランジスタ(MISあるいはMOSFET))に対して、高温に加熱された熱触媒体表面での重水素を含んだガスの熱触媒作用によって生成された活性化した重水素を用いることにより、600°C以下の低温においてゲート絶縁膜/シリコンカーバイド半導体界面近傍に存在するダングリングボンドの重水素終端を図る。 (もっと読む)


【課題】絶縁膜上に保護膜を形成した構造において、絶縁耐圧の低下を防ぐ。
【解決手段】基板上に形成された第1の半導体層と、前記第1の半導体層上に形成された第2の半導体層と、前記第2の半導体層上に形成されたソース電極及びドレイン電極と、前記第2の半導体層上に形成された絶縁膜と、前記絶縁膜上に形成されたゲート電極と、前記絶縁膜を覆うように形成された保護膜と、を有し、前記保護膜は、熱CVD、熱ALD、真空蒸着のいずれかにより形成されたものであることを特徴とする半導体装置により上記課題を解決する。 (もっと読む)


【課題】埋め込みゲートトランジスタのSCEに対する免疫性を向上させると同時に、分岐点での重なりを増加させる方法及び構造の提供。
【解決手段】基板102は第1活性領域104と第2活性領域106とを有し、浅溝分離(STI)領域108によって分離される。バッファ層112は応力緩和層として機能しハードマスク層114が形成される。基板102の表面に分離領域108を部分的に網羅するように凹部118を設ける。ゲート誘電体120が凹部118に形成された後第一ドーパントインプラント122により、ドープ済みチャンネル領域124が形成される。インプラントはハードマスク114を貫通しないので、凹部118の下に形成されたドープ済みチャンネル領域124中のドーパント濃度は最も高くなる。ドープ済みチャンネル領域124はトランジスタのオン・オフを切り替える閾値電圧を変調する。 (もっと読む)


【課題】 本発明は、低消費電力で動作する論理回路に応用できる電界効果トランジスタを提供することを目的とするものである。
【解決手段】 ソース電極とソース電極が接する半導体の伝導帯又は価電子帯との間に障壁を有しており、ソース電極から障壁を通して流れ込む電子又はホールをゲート電圧により調整できる構成を有することを特徴とするnチャンネル又はpチャンネルの電界効果トランジスタ。 (もっと読む)


【課題】ゲート絶縁膜の形成を1000℃以上で行う場合に、Grow−in欠陥の発生の抑制と、BMDを用いたゲッタリング効果の向上を両立させる。
【解決手段】初期状態での酸素濃度が5×1017atoms/cm以下の半導体基板に素子分離領域3を形成し、ゲート絶縁膜5aを1000℃以上の熱酸化により形成した後、酸素をイオン注入して熱処理することで、BMD層30を素子分離領域3の底面よりも下方に形成する。 (もっと読む)


【課題】MOS型デバイスのゲート絶縁膜の破壊を防止すると共に、信頼性を向上させ、かつ、チップサイズの増加を抑制した、窒化物系半導体装置を提供することができる、窒化物系半導体装置を提供することを目的とする。
【解決手段】ショットキー電極30が、ソース電極24とドレイン電極26とが対向する領域の、ソース電極24とドレイン電極26とが対向する方向と略直交する方向にゲート電極28と並んで形成されている。ショットキー電極30は、AlGaN層20とショットキー接合されており、ソース電極24に電気的に接続されている。 (もっと読む)


【課題】オフ時のリーク電流を低減し、パワースイッチング素子に適用可能なノーマリーオフ型の半導体装置を提供する。
【解決手段】基板101と、基板101の上に形成されたアンドープGaN層103と、アンドープGaN層103の上に形成されたアンドープAlGaN層104と、アンドープGaN層103又はアンドープAlGaN層104の上に形成されたソース電極107及びドレイン電極108と、アンドープAlGaN層104の上に形成され、ソース電極107とドレイン電極108との間に配置されたp型GaN層105と、p型GaN層105の上に形成されたゲート電極106とを備え、アンドープGaN層103は、チャネルを含む活性領域113と、チャネルを含まない不活性領域112とを有し、p型GaN層105は、ソース電極107を囲むように配置されている。 (もっと読む)


【課題】チャネル領域となるSOI構造を有する半導体線条突出部の形状のばらつきを抑制し、トランジスタ特性のばらつきを減少することができる半導体装置を提供する。
【解決手段】半導体基板1の素子分離用の溝に埋込み絶縁膜が埋め込まれてなる素子分離領域2と、素子分離領域2によって区画されてなり、素子分離用の溝を区画する側壁面と半導体基板の1一面とを有し、かつ側壁面には埋込み絶縁膜に向けて突出した半導体線条突出部1aが素子分離用の溝に沿って設けられてなる活性領域Tと、半導体線条突出部1aを残して活性領域Tを分断するように設けられたゲート電極用のゲート溝3と、ゲート溝3の内面に形成されたゲート絶縁膜4と、ゲート溝3に埋め込まれたゲート電極5と、ゲート電極5のゲート長方向両側の活性領域Tにそれぞれ形成され、半導体線条突出部1aによって連結される不純物拡散領域7と、を具備してなることを特徴とする。 (もっと読む)


【課題】ゲートリセスの深さの制御を安定的に行なえるようにして、ノーマリオフ動作のデバイスを安定的に作製できるようにする。
【解決手段】半導体装置を、基板1の上方に設けられたGaN電子走行層2と、GaN電子走行層2上に設けられた第1AlGaN電子供給層3と、第1AlGaN電子供給層3上に設けられたAlN電子供給層4と、AlN電子供給層4上に設けられた第2AlGaN電子供給層5と、第2AlGaN電子供給層5及びAlN電子供給層4に設けられたゲートリセス9と、ゲートリセス9に設けられたゲート電極12とを備えるものとする。 (もっと読む)


【課題】リカバリ損失の低減が図れ、かつ、ノイズによるセルフターンオンが生じ難い構造の半導体装置を提供する。
【解決手段】ゲート電極8を深さの異なる第1、第2ゲート電極8a、8bを備えたダブルゲート構造とする。このような構造では、第1、第2ゲート電極8a、8bのうちの第1ゲート電極8aのみをオンさせることで、p型ベース領域3に対して反転層を形成しながらも、その反転層がn-型ドリフト層2とn+型不純物領域4とを繋ぐ深さまでは形成されないようにすることができる。この第1ゲート電極8aを過剰キャリア注入抑制ゲートとして機能させる。 (もっと読む)


【課題】耐圧を向上した半導体装置及びその製造方法を提供する。
【解決手段】半導体装置は、第1半導体領域、第2半導体領域、第3半導体領域、第4半導体領域、ゲート領域、ゲート絶縁膜及び電界緩和領域を備える。第1導電形の第1半導体領域は、第1部分と第1方向に延出した第2部分とを有する。第1導電形の第2半導体領域は、第1部分上の第3部分と第2部分と隣接する第4部分とを有する。第2導電形の第3半導体領域は、第3部分上の第5部分と第4部分と隣接する第6部分とを有する。第1導電形の第4半導体領域は、第5部分上で第6部分と隣接する。ゲート領域は、第2半導体領域、第3半導体領域及び第4半導体領域を第2方向に貫通するトレンチ内に設けられる。ゲート絶縁膜は、トレンチ内壁とゲート領域との間に設けられる。第2導電形の電界緩和領域は、第3部分と第5部分との間に設けられ、第3半導体領域よりも不純物濃度が低い。 (もっと読む)


【課題】炭化珪素MOSFETにおいて、炭化珪素層とゲート絶縁膜との界面に発生する界面準位を十分に低減できず、キャリアの移動度が低下する場合があった。
【解決手段】この発明に係る炭化珪素半導体装置は、炭化珪素層を有し炭化珪素層上にゲート絶縁膜を形成した基板を炉の中に導入する基板導入工程と、基板を導入した炉を加熱して一酸化窒素と窒素とを導入する加熱工程とを備え、加熱工程は、窒素を反応させてゲート絶縁膜と炭化珪素層との界面を窒化する。 (もっと読む)


【課題】窒化処理によって低下した閾値電圧を、向上させることができる炭化珪素半導体装置の製造方法を提供する。
【解決手段】ベース領域7およびソース領域8を含む炭化珪素ドリフト層6上に二酸化珪素を主成分とするゲート絶縁膜11が形成された炭化珪素基板2を窒化処理する窒化処理工程と、窒化処理工程後、炭化珪素基板2を、一酸化二窒素を含む雰囲気中で600℃以上1000℃以下の温度で熱処理する熱処理工程と、を備える。 (もっと読む)


【課題】ゲート電極の端部でのバイアス電界集中が緩和され、且つ動作時のオン抵抗の増大が抑制された化合物半導体装置を提供する。
【解決手段】キャリア供給層22、及びキャリア供給層22との界面近傍において二次元キャリアガス層23が形成されるキャリア走行層21を有する化合物半導体層20と、化合物半導体層20の主面200上に配置されたソース電極3及びドレイン電極4と、ソース電極3とドレイン電極4間で主面200上に配置されたゲート電極5と、ゲート電極5とドレイン電極4間で主面200上方に配置されたフィールドプレート6と、フィールドプレート直下の二次元キャリアガス層が形成される領域内に配置された、上方にフィールドプレート若しくはゲート電極が配置されていない二次元キャリアガス層が形成される領域よりも導電率が低い低導電性領域210とを備える。 (もっと読む)


【課題】トレンチゲート構造で共用ドレインを有する2つのMOS型トランジスタから構成される双方向スイッチのオン抵抗の低減を図る。
【解決手段】N型ウエル層2に複数のトレンチ3を形成する。次に前記複数のトレンチ3に挟まれたN型ウエル層2に1列おきにP型ボディ層6を形成する。複数のP型ボディ層6にはN+型第1ソース層7とN+型第2ソース層9を交互に形成する。N+型第1ソース層7を挟む1対のトレンチ3のそれぞれに第1ゲート電極5a、N+型第2ソース層9を挟む1対のトレンチ3のそれぞれに第2ゲート電極5bを形成する。第1ゲート電極5aが形成されたトレンチ3のP型ボディ層6側と反対側の側壁と第2ゲート電極5bが形成された同様の側壁に挟まれたN型ウエル層2を電界緩和層としてのN型ドレイン層11aとする。該N型ドレイン層11aを双方向スイッチのオン電流の流れる電流経路とする。 (もっと読む)


【課題】自己整列リセス・ゲート構造及び形成方法の提供。
【解決手段】最初に,絶縁用のフィールド酸化物領域20を半導体基板10内に形成する。半導体基板の上に形成された絶縁層内に複数のコラムを画定し,それに続いて,薄い犠牲酸化物層を半導体基板の露出領域の上に形成するが,フィールド酸化物領域の上には形成しない。次に,各コラムの側壁上,並びに犠牲酸化物層及びフィールド酸化物領域の一部分の上に誘電体を設ける。第1エッチングを行い,それにより,半導体基板内に第1組のトレンチを,またフィールド酸化物領域内に複数のリセスを形成する。第2エッチングを行い,それにより,コラムの側壁上に残っている誘電体残留部を除去し,かつ第2組のトレンチを形成する。次に,第2組のトレンチ内及びリセス内にポリシリコンを堆積させ,それにより,リセス導電性ゲートを形成する。 (もっと読む)


【課題】ワイドギャップ半導体基板の位置検出を、可視光を用いて高精度に行う。
【解決手段】一実施形態によれば、ナローギャップ半導体基板(例えばSi基板2)の主面の所定の位置に彫り込み型のアライメントマーク4が形成されたナローギャップ半導体基板のその主面上にワイドギャップ半導体層(例えばGaN層19)をエピタキシャル成長したことにより、基板位置決め用のアライメントマークが予め埋め込まれているワイドギャップ半導体基板を提供する。 (もっと読む)


【課題】溝部を絶縁膜で埋設する際に、溝部のアスペクト比が大きい場合であっても、内部にボイドを残存させることなく、溝部内に絶縁膜を充填する。これにより微細化した半導体装置の製造を容易に行うことを可能とする。
【解決手段】隣り合う凸部の間に形成される溝部の上端部においてオーバーハング形状を有すると共に、溝部の上部にボイドを有するように溝部内に溝部用絶縁膜を形成する。凸部の高さ方向に対して斜め方向から、溝部用絶縁膜に不純物をイオン注入することにより、溝部内に形成された溝部用絶縁膜の一部に不純物をドープする。溝部用絶縁膜の不純物がドープされた部分を除去した後、溝部内に溝部用絶縁膜を充填する。 (もっと読む)


101 - 120 / 564