説明

Fターム[5F152NP09]の内容

Fターム[5F152NP09]に分類される特許

241 - 252 / 252


【課題】異種基板を剥離する工程を含む窒化物半導体ウエハ又は窒化物半導体素子の製造方法において、異種基板剥離時の窒化物半導体層の破断を抑制する方法を提供する。
【解決手段】窒化物半導体と異なる異種基板16上に成長された窒化物半導体層18から、前記異種基板16−窒化物半導体層18界面に酸又はアルカリであるエッチング溶液を供給しながら、異種基板16側から前記窒化物半導体層18のバンドギャップ波長よりも短波長のレーザ光を照射することによって異種基板16の剥離を行う。 (もっと読む)


【課題】異なる格子の基板上に成長した良質なエピタキシャル層を備えたウェーハを得る方法の提供。
【解決手段】オンアクシスシリコン基板を研磨ステップ104で研磨して、ウェーハの表面粗さを増大させる。例えばSiGe層である傾斜バッファ層及び緩和層をウェーハ上に形成した後、CMP最終研磨108を実施する。 (もっと読む)


窒化ガリウム材料領域を含む半導体材料、及びこのような構造と関連する方法が提供される。前記半導体構造は前記構造の中に形成される歪み吸収層を含む。前記歪み吸収層は前記基板(例えばシリコン基板)と上部層の間に形成されてよい。前記歪み吸収層が非常に薄く、非晶質構造を有し、窒化ケイ素からなる材料から形成されることが好ましい場合がある。前記歪み吸収層は、他の優位点の中で、他の上部層(たとえば窒化ガリウム材料領域)における他の種類の欠陥の形成を制限する、上部層(例えば、窒化物からなる材料層)において形成されるミスフィット転位数を削減できる。したがって、歪み吸収層の存在は、素子性能の改善につながることがある窒化ガリウム材料領域の質を改善できる。
(もっと読む)


本発明は、サファイヤ基板上にSi
(c,b>0,a≧0)の組成からなる第1層を形成する第1段階と、Si
(c,b>0,a≧0)の組成からなる第1層の上にGaN成分を含む窒化膜を形成する第2段階と、を含むことを特徴とするGaN系窒化膜の形成方法に関する。
(もっと読む)


リフトオフ工程を用いて、材料層と基板との間の界面を照射することによって基板から材料層を分離する。一実施例では、層を、基板上のダイに対応する複数のセクションに分離し、均一なビームスポットを整数の数のセクションをカバーするような形状にする。
(もっと読む)


ワイドバンドギャップ材料内に、接合温度低下、動作中の高電力密度化、及び定格電力密度における信頼性向上を達成する高電力デバイスを形成する方法を、結果的に得られる半導体構造及びデバイスと共に開示する。本方法は、ダイアモンドの層を炭化珪素ウェハに添加して、得られる複合ウェハの熱伝導率を高め、その後、炭化珪素の上におけるエピタキシャル成長を支持するためにその十分な厚さを保持しつつ、複合ウェハの炭化珪素部分の厚さを削減し、複合ウェハの炭化珪素面を、その上におけるエピタキシャル成長のために、準備し、第III族窒化物ヘテロ構造を、ウェハの準備した炭化珪素面に添加することを含む。
(もっと読む)


非極性a面GaN/(A1、B、In、Ga)N多重量子井戸(MQW)を製造する方法。a面MQWは、有機金属化学気相成長法(MOCVD)によって適切なGaN/サファイアテンプレート層上に成長し、井戸幅は20Å〜70Åの範囲である。a面MQWからの室温光ルミネセンス(PL)放射エネルギーは、自己無頓着ポアソン−シュレディンガー(SCPS)計算を使用してモデリングされた正方井戸傾向を伴った。最適PL放射強度は、a面MQWについて52Åの量子井戸幅で得られる。
(もっと読む)


本発明は、窒化物半導体エピタキシャル層を成長させる方法に関し、第1の窒化物半導体エピタキシャル層の上に第2の窒化物半導体エピタキシャル層を第1の温度で成長させる第1の段階と、第2の窒化物半導体エピタキシャル層の上に第3の窒化物半導体エピタキシャル層を第2の温度で成長させる第2の段階と、第2の温度より高い第3の温度に昇温して第2の窒化物半導体エピタキシャル層から窒素を放出する第3の段階と、を含む窒化物半導体エピタキシャル層を成長させる方法を提供し、これにより基板の反りおよび格子欠陥密度を低減することができる。

(もっと読む)


本発明は、エピタキシャル基板、例えば、GaN,SiGe,AlNまたはInNのエピタキシャル基板の製造方法、およびエピタキシャル基板上またはその中に作製された電子デバイスに関する。本発明の目的は、基板の影響を更に軽減することが可能であると同時に経済的に実行可能な、エピタキシャル基板の製造方法を提供することである。この目的は、以下のように達成することが出来る。すなわち、結晶性基板を用意し、原子種を基板に注入して脆性層を作成し、第1の温度で、基板の表面にエピタキシャル補強層を設け、第2の温度範囲で補強層を基板の副層とともに基板の残部から分離させて、これによって、この分離した材料によって、その上にホモエピタキシャル層またはヘテロエピタキシャル層の形成する擬似基板が作成される。 (もっと読む)


複数の縦型構造光学電子装置を結晶基板上に形成し、レーザリフトオフ処理で基板を取り除く工程を含んだ縦型構造光学電子装置の製造方法が開示されている。続いてこの方法は基板の代わりに金属支持構造体を形成する。1例ではこの形成には電気メッキ処理及び/又は無電メッキ処理が利用される。1例では縦型構造体はGaN型であり、結晶基板はサファイヤ製であり、金属支持構造体は銅を含む。本発明の利点には、高性能で生産効率が高い大量生産用の縦型構造LEDの製造が含まれる。 (もっと読む)


本発明は、核生成層(2)、多結晶性または多孔性緩衝層(4)、および支持体基板(6)を含む結晶成長用支持体を提供する。 (もっと読む)


多段を用いたエピタキシャルラテラルオーバーグロースにより窒化ガリウム基板の成長を行う。開口部領域を有するマスクされた基板上で、選択的成長により最初に三角形ストライプを作成すると、大部分の貫通転位は90°曲がる。第2段では、成長条件を変化させてラテラル成長速度を高め、平坦な(0001)面を生じさせる。この段階で、表面上の転位密度は<5×107cm-2である。転位は主に、2つのラテラル成長したファセットがぶつかり合って合体した合体領域に存在する。転位密度をさらに低下させるため、2回目のマスキング工程を開口部が1回目のそれの真上にくるように行う。合体領域の貫通転位(TD)は上層には伝播しない。したがって、転位密度は全表面にわたって<1×107cm-2まで低下する。
(もっと読む)


241 - 252 / 252