説明

窒化物半導体ウエハ又は窒化物半導体素子の製造方法、それにより得られる窒化物半導体ウエハ又は窒化物半導体素子、並びにそれに用いるレーザ照射装置

【課題】異種基板を剥離する工程を含む窒化物半導体ウエハ又は窒化物半導体素子の製造方法において、異種基板剥離時の窒化物半導体層の破断を抑制する方法を提供する。
【解決手段】窒化物半導体と異なる異種基板16上に成長された窒化物半導体層18から、前記異種基板16−窒化物半導体層18界面に酸又はアルカリであるエッチング溶液を供給しながら、異種基板16側から前記窒化物半導体層18のバンドギャップ波長よりも短波長のレーザ光を照射することによって異種基板16の剥離を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本件発明は、窒化物半導体ウエハ又は窒化物半導体素子の製造方法、それにより得られる窒化物半導体ウエハ又は窒化物半導体素子、並びにそれに用いるレーザ照射装置に関する。特に、窒化物半導体と異なる異種基板を剥離する工程を備えた窒化物半導体ウエハ又は窒化物半導体素子の製造方法に関する。
【背景技術】
【0002】
窒化物半導体ウエハや窒化物半導体素子の製造において、窒化物半導体層をサファイアやSiC等の異種基板から剥離することが必要となる場合がある。例えば、単体の窒化物半導体から成る窒化物半導体ウエハは、一般に、サファイア等の異種基板上に窒化物半導体層を厚膜に成長させた後、異種基板を剥離することによって製造される。また、紫外発光のLEDを製造する場合、サファイア等の異種基板上に結晶下地となるGaN層を介して素子層を形成した後、素子層の最上面にCuW等の支持基板を固着し、異種基板をGaN下地層から剥離し、さらにGaN下地層を研磨によって除去して素子形成を行うことがある。
【0003】
窒化物半導体層から異種基板を剥離する方法としては次のようなものが知られている(特許文献1、特許文献2、特許文献3等)。
(1)異種基板と窒化物半導体の界面にレーザ光を照射することにより異種基板を剥離する(特許文献1、特許文献2等)。
(2)異種基板の研磨処理による除去。
(3)異種基板と窒化物半導体の間にリフトオフ層を形成しておき、リフトオフ層に応力を加えることによって異種基板の剥離を行う(特許文献2)
(4)異種基板と窒化物半導体との間にエッチング除去可能な物質を形成しておき、この物質をエッチング除去することによって異種基板を剥離する(特許文献3)。
【0004】
これら中でも、レーザ光の照射により異種基板を剥離する方法は、特殊な材料を使う必要がなく、また、短時間で簡単に実施できるため、最も広く用いられている。この方法では、異種基板の側から窒化物半導体の吸収率が高い波長のレーザ光を照射し、界面近傍にある窒化物半導体を窒素と金属に分解することによって剥離を行う。
【0005】
【特許文献1】特開平2004−91278号公報
【特許文献2】特開平2000−101139号公報
【特許文献3】特開平7−202265号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、レーザ光の照射により窒化物半導体層から異種基板を剥離する場合、ウエハの一部領域で窒化物半導体が十分に分解せず、あるいは窒化物半導体層が溶接されたような状態となり、窒化物半導体層の一部が破断して異種基板と共に剥がれやすいという問題があった。レーザ光のビームには一定の強度分布が存在するため、ウエハ面内でレーザ光の照射強度は完全に均一にならない。このためウエハの一部の領域で窒化物半導体層の分解が不十分となり、分解によって生成した金属が窒化物半導体層と異種基板を溶接したような状態となる場合がある。そのため、窒化物半導体層と異種基板が剥離していない癒着部がウエハ面内に残ることになる。そうすると、窒化物半導体層の分解によって発生した窒素ガスが癒着部の窒化物半導体層を押し、それによって窒化物半導体層が破断し易い。また、癒着部があるために、異種基板を完全に剥離するために機械的な応力を加える必要があり、その際にも窒化物半導体層が破断してしまう。このため部分的に剥がれた窒化物半導体層が異種基板側に残り易い。さらに、レーザ光の照射によって異種基板を剥離した場合、剥離後の窒化物半導体層は表面状態が悪い。このため、平滑な面とするには機械的な研磨を行う必要がある、という問題もあった。
【課題を解決するための手段】
【0007】
そこで本件発明は、異種基板を剥離する工程を含む窒化物半導体ウエハ又は窒化物半導体素子の製造方法において、異種基板剥離時の窒化物半導体層の破断を防止する方法を提供することを目的とする。また、さらに平滑な剥離面を得ることのできる方法を提供することも目的とする。
【0008】
上記目的を達成するために、本件発明の第1の側面では、窒化物半導体ウエハ又は窒化物半導体素子を製造する際に、前記異種基板の剥離を、酸又はアルカリであるエッチング溶液中で、異種基板側から窒化物半導体層のバンドギャップ波長よりも短波長のレーザ光を照射して行うことを特徴とする。また、本件発明の第2の側面においては、窒化物半導体の素子構造形成時に設けられた下地層を除去するために、酸又はアルカリのエッチング溶液中で下地層のバンドギャップ波長よりも短波長の光を照射しながらエッチングすることも特徴とする。
【0009】
尚、窒化物半導体層のバンドギャップ波長とは、窒化物半導体層のバンドギャップに相当するエネルギーの波長を指す。例えば、窒化ガリウムはバンドギャップが3.4eVであり、約365nmがバンドギャップ波長となる。また、窒化物半導体層が複数の層の積層である場合、異種基板との界面にあって光によって分解する部分の窒化物半導体層(例えば、後述する下地層)のバンドギャップ波長を基準として光の波長を決定する。また尚、本件明細書において紫外発光とは波長420nm以下の波長の光を発光することを指す。また、本件明細書で紫外線とは420nm以下の波長を指す。
【発明の効果】
【0010】
窒化物半導体に短波長の光を照射すると、窒化物半導体層が光を吸収して非常な高温となり、窒素と金属に分解する分解反応が進行すると共に、窒化物半導体層内で電子−正孔対が励起されて化学エッチングに対するエッチング速度が非常に高くなる。従って、酸又はアルカリであるエッチング溶液中で異種基板側から窒化物半導体層に光を照射すると、光の照射部分において窒化物半導体層の熱分解と化学エッチングが同時に進行し、異種基板の全面が均一に剥離すると共に、窒化物半導体層側の剥離面が極めて平滑となる。従って、異種基板剥離時の窒化物半導体層の破断が防止できると共に、鏡面に近い平滑な剥離面を持つ窒化物半導体層を得ることができる。
【0011】
また、下地層のエッチングの際にも短波長の励起光を照射することにより、励起作用によって窒化物半導体のエッチング速度を大きくすると共に、下地層とその上に設けられた結晶層、若しくは素子構造の材料とのエッチングレート差を大きくできる。従って、下地層を選択的、若しくは優先的にエッチング除去することができる。また下地層を除去した後の素子構造を有するウエハの平坦性を優れたものとできるため、量産性を向上することができる。
【発明を実施するための最良の形態】
【0012】
以下、本件発明の実施形態について図面を参照しながら説明する。
実施の形態1
図1は、本件発明に係る窒化物半導体ウエハ又は窒化物半導体素子の製造方法中で特徴となる部分、即ち、異種基板16上に窒化物半導体層18が成長されたウエハ20から異種基板16を剥離する工程を示す模式図である。図1に示すように、エッチング槽8中には酸又はアルカリであるエッチング液10が貯められており、そのエッチング液10中にウエハ20がホルダ14によって保持されている。ウエハ20は、異種基板16が上面となるように設置されており、異種基板16側からレーザ光3が照射される。
【0013】
レーザ光3は、図2に示すように線状のビーム形状を有しており、ビーム長手方向に垂直な方向に走査されて、ウエハ20の全面に照射される。レーザ光3は、窒化物半導体層18のバンドギャップ波長よりも短波長のレーザ光である。例えば、窒化物半導体18がGaNである場合は、GaNのバンドギャップである3.4eVに対応する波長である約365nmよりも短波長のレーザ光となっている。また、レーザ光3の波長は、異種基板16によって吸収されないように、異種基板16のバンドギャップ波長よりも長波長となるように選択されている。そのようなレーザ光が異種基板16の側から照射されることにより、異種基板16との界面近傍にある窒化物半導体層18がレーザ光を吸収して局所的に加熱され、熱分解して金属と窒素ガスとなる。
【0014】
ここでレーザ光3は、略楕円形のビームを所定のレンズ系によって線状にしたものであるため、例えば図3に示すような強度プロファイルを示し、ビーム中央付近の強度が強く、ビーム周辺部は相対的に強度が弱くなる。このため、従来と同様に大気中においてウエハ20にレーザ光3を照射した場合、ウエハ周辺部において熱分解が不十分となり易い。
【0015】
図4A及び図4Bは、従来と同様に大気中でウエハ20にレーザ光3を照射した場合の照射途中の様子を示す模式断面図である。図4Aは、レーザ光3の走査方向に平行な断面を示し、図4Bは、レーザ光3の走査方向に垂直な断面を示す。図4A及びBに示すように、レーザ光3の進行に伴い異種基板16との界面近傍において窒化物半導体層18の熱分解が進行するが、レーザ光の走査方向に垂直な断面から見た場合、ウエハ中央部に比べてウエハ周辺部のレーザ光強度が弱くなる。このため、図4Bに示すように、ウエハ中央部20aでは窒化物半導体層18の分解が進行する一方、ウエハ周辺部20bでは、窒化物半導体層18が十分に分解しないか、分解によって生じた金属が窒化物半導体層18と異種基板16を溶接したような状態となる。このため、異種基板16が剥離せずに中央付近だけが浮いたような状態となる。窒化物半導体の分解が進んだ部分には分解生成物である窒素ガスが溜まり、外に出ようとする際に異種基板16と癒着した窒化物半導体18を押しのけようとして、窒化物半導体層18の破断を招いていた。また、癒着した窒化物半導体を剥がすために異種基板16に機械的な力を加えて剥離する必要があったため、その際にも窒化物半導体18が破断し、剥がれた窒化物半導体18が異種基板16側に残ってしまうという問題も生じていた。尚、ここではレーザ光を線状のビーム形状にして走査する場合を例として説明したが、レーザ光を他の方法でウエハ全面に照射した場合であっても、レーザ光に強度分布がある限り同様の問題が生じ得る。
【0016】
また、大気中でレーザ光3を照射して異種基板を剥離した場合、窒化物半導体層18が金属と窒素ガスに分解されるため、分解した金属は窒化物半導体層18の表面近傍に残ることになり、剥離した後の窒化物半導体層18の表面が平滑とならず、表面に多数の凹凸が形成されてしまう。そのため、さらに素子工程を進めるためには、剥離面をCMP(ケミカルメカニカルポリッシング)して平滑にする等の処理をする必要であった。
【0017】
そこで本実施の形態では、図1に示すように、酸又はアルカリであるエッチング液10中においてウエハ20にレーザ光3を照射する。エッチング液10によるエッチング速度は、エッチング槽8の全体におけるエッチング速度が比較的低くなるように、即ち、窒化物半導体層18のバルク部分の表面形状や結晶品質に悪影響を及ぼさない程度に選択されている。しかしながら、レーザ光3の照射によって異種基板16と窒化物半導体層18の界面の剥離が進行し、その界面17にエッチング液が浸透すると、そこでは窒化物半導体層18がレーザ光を吸収して局所的に高温になると共に、レーザ光3によって電子−正孔対が多数励起されているため、窒化物半導体層18に対して相当に高いエッチング速度を示すようになる。このため、レーザ光3が照射されている異種基板−窒化物半導体層界面17では、レーザ光3の吸収による熱分解とレーザ光の吸収によって促進された化学エッチングの2つの作用が同時に働くことになり、レーザ光強度が相対的に弱い領域でも異種基板16と窒化物半導体層18が容易に剥離するようになる。即ち、本実施の形態による剥離方法によれば、レーザ光3の強度分布に拘わらず、ウエハ全面で均一に異種基板16を剥離することができる。
【0018】
また、本実施の形態に従って異種基板16を剥離して得られた窒化物半導体層18のウエハ(=窒化物半導体ウエハ)は、剥離面が鏡面に近い平滑面である、という特徴を有する。即ち、前述の通り、レーザ光3を照射した界面17の近傍では高温であり、かつ電子−正孔対が多数形成されているため、窒化物半導体層18がエッチングされ易くなっている。さらに言えば、界面17近傍では窒化物半導体の熱分解によって生成した金属によって窒化物半導体層18が金属リッチとなっているため、組成的にもその他のバルク部分に比べて一層エッチングされ易くなっている。このためエッチング液10中でレーザ光3を照射して剥離した後の窒化物半導体層18の表面は表面粗さの値が10nm以下と、鏡面に近い平滑面にできる。尚、本件発明における「表面粗さ」とは、走査プローブ顕微鏡(例えばSEIKO社製、SP13800)によって測定された値を指す。
【0019】
このように平滑な剥離面を有する窒化物半導体ウエハは、その後の素子形成が極めて容易となる、という利点を有する。例えば、異種基板を剥離した後の窒化物半導体層に電極を形成する場合には、窒化物半導体層の表面状態が良好であるためオーミック接触を取りやすくなる。また、異種基板を剥離した後の窒化物半導体層から、紫外線を吸収する窒化ガリウムを除去するといった加工を行う場合にも、従来は窒化物半導体層の表面に凹凸があれば研磨等の機械的な方法を用いる必要があった。しかし、本発明の方法によって得られた窒化物半導体層の表面は平滑であるため、ドライエッチング等の簡易な方法で層の除去を行うことができる。
【0020】
レーザ光3を照射する雰囲気温度、即ち、エッチング槽8の槽内の温度は、常温であっても良いし、エッチング液10が蒸発してしまわない程度の高温であっても良い。また、エッチング液10は、窒化物半導体層18に対して適度なエッチング速度を示す酸又はアルカリであれば特に限定されない。例えば、KOH、硫酸、リン酸、フッ酸、ピロリン酸等を用いることができる。中でも、pH9〜12程度、より好ましくはpH10〜13程度の強アルカリであることが望ましい。例えば、濃度0.01M〜10M、より好ましくは0.1M〜1MのKOHを用いることができる。尚、この実施の形態ではエッチング槽8にエッチング液10を貯めて結晶成長ウエハ20を浸漬したが、レーザ光3を照射した界面17にエッチング液10を供給できれば、エッチング液10の供給方法はこれに限られない。例えば、結晶成長ウエハ20の側面を覆う円環状の液溜めにエッチング液を貯める等の方法によって、異種基板−窒化物半導体層界面にエッチング液を供給しても良い。また、ここで説明したエッチングの方法は、実施の形態4及び5で説明する下地層除去にも同様に適用できる。
【0021】
異種基板16を剥離する対象となるウエハ20は、窒化物半導体と異なる異種基板16上に、窒化物半導体18が成長されたものであれば、どのようなものでも良い。窒化物半導体を成長させる異種基板には、C面、R面及びA面のいずれかを主面とするサファイア、スピネル(MgAlのような絶縁性基板)、窒化物半導体と格子整合する酸化物基板、SiC、Si等を挙げることができる。中でもサファイアやスピネルが好ましい。さらに、異種基板は、C面等の格子面から0.1〜0.5度程度にオフアングルしたものを用いることが好ましい。この場合オフアングルしたものを用いることにより、窒化物半導体層の結晶性を向上させることができる。
【0022】
基板側から基板−窒化物半導体界面へレーザ光照射する場合、即ち基板中にレーザ光を透過させる場合には、サファイア、SiC、AlN等を基板に用いることが好ましい。ここでAlN基板は、サファイア等の異種基板上に成長させたAlN結晶を単体化したものでも良い。単体化の際には、本発明の剥離方法を用いても良い。また、次のような方法でAlN基板を得ても良い。即ち、サファイア等の異種基板上に、窒化物半導体の第1層としてAlN結晶を成長し、その上にそれよりバンドギャップエネルギーの小さい第2層(例えばGaN結晶)を形成する。そして、本発明の剥離方法を用いて異種基板を剥離して、第1層と第2層を有する窒化物半導体積層体を得る。更に、本発明の剥離方法を用いてAlN結晶からなる第1層を窒化物半導体積層体から剥離することにより、AlN基板を得ることができる。このときに残るGaNから成る第2層の上に予め素子構造が形成されてあっても良い。これに代えて、窒化物半導体積層体から実施の形態4で説明する下地層の除去方法を用いて第2層を除去することによっても、AlN基板を得ることができる。
【0023】
窒化物半導体層18は、単結晶の窒化物半導体であれば特に限定されないが、AlInGa1−a−bN(0≦a≦1、0≦b≦1、a+b≦1)、より好ましくはGaNであることが望ましい。また、窒化物半導体18は、低温成長バッファ層を介して成長した単結晶層であることが好ましく、単層であっても複数の層の積層であっても良い。ここで低温成長バッファ層とは、単結晶である窒化物半導体層よりも低温、例えば、400℃から800℃程度の温度で成長され、異種基板16と窒化物半導体層18の間の格子不整合を緩和する層を指す。また、窒化物半導体層18は実施の形態3で説明する様な横方向成長方法によって成長させたものでも良い。また、結晶成長基板20から異種基板16を剥離するには、異種基板16を剥離した後のウエハが自立し得るだけの機械的強度を有していなければならない。そこで、結晶成長ウエハ20は、窒化物半導体層18を厚さ100μm以上の厚膜に成長するか、窒化物半導体層18の上面に適当な支持基板を固着してから異種基板16を剥離することが好ましい。
【0024】
次に、本実施の形態において異種基板の剥離に用いるレーザ照射装置について図5を参照しながら説明する。図5に示すレーザ照射装置1は、レーザ光源2と、レーザ光源2の出射光を剥離前ウエハ20の全面に照射するための光学系6と、酸又はアルカリのエッチング液10を貯めるためのエッチング槽8と、ウエハ20を保持するためのホルダ14とを備える。
【0025】
レーザ光源2からは、ウエハ20中において異種基板16を剥離する対象となる窒化物半導体18のバンドギャップ波長よりも短波長のレーザ光が出射される。例えば、窒化物半導体18がGaNである場合は、レーザ光源2としては、KrFエキシマレーザ(波長248nm)、YAGレーザ(4倍波波長266nm)、Nd:YAGレーザ(波長355nm)等を用いることができる。
【0026】
レーザ光源2から出射されたレーザ光は、光学系6によってエッチング槽8内に配置されたウエハ20の全面に照射される。例えば、光学系6は、レーザ光を線状のビーム形状にするレンズ系4と、線状にしたレーザ光をウエハ20上でビーム長手方向に直交する方向に1次元走査する走査レンズ5とを有する。レーザ光を走査する光学系6は、ウエハ20の全面にレーザ光を照射できるものであれば特に限定されない。例えば、略円形のビームを2次元走査するものであっても良い。但し、線状のビーム形状にして1次元走査すれば、短時間でウエハ20の全面にレーザ光を照射できると共に、窒化物半導体層−異種基板界面17へのエッチング液10の浸透が容易になるため好ましい。
【0027】
エッチング槽8内では、ウエハ20の少なくとも側面が浸かるように酸又はアルカリのエッチング液10が貯められており、レーザ光3の照射によって窒化物半導体18の分解が進むと、異種基板16との界面にエッチング液10が浸透していく。従って、このレーザ照射装置1によれば、異種基板−窒化物半導体の界面にエッチング液を供給しながら、ウエハの全面に短波長のレーザ光3を照射することができる。
【0028】
実施の形態2
本実施の形態では、窒化物半導体素子の1種である紫外発光用の発光ダイオードやレーザの製造に本件発明を適用する例について説明する。一般に、窒化物半導体発光素子では、サファイア等の異種基板上に高温成長された窒化ガリウムの結晶下地層を積んでから素子層を形成することによって内部量子効率の高い発光素子とすることができるが、紫外発光用の発光ダイオードやレーザでは、結晶下地層である窒化ガリウムは紫外線に対する吸収率が高いため、活性層の発光が結晶下地層で自己吸収されて外部量子効率が低下してしまう。そこで、素子層形成後のウエハ上面にCu−W等の支持基板を固着した後、異種基板を剥離し、さらに結晶下地層である窒化ガリウム層を除去することが提案されている。この異種基板の剥離を、レーザ照射しながら界面にエッチング溶液を供給して行う。
【0029】
図6A〜Fは、本実施の形態に係る窒化物半導体発光素子の製造方法を示す模式断面図である。異種基板31の表面に、バッファ層33と高温成長層34とから成る下地層32を形成する(図6A)。次に、下地層32上にn型クラッド層35、活性層36、p型クラッド層37、p型コンタクト層38、そして、1層以上の金属層から成る第1の接合層39を形成する(図6B)。ここで、第1の接合層39において、p型コンタクト層38上にp電極を形成した後、オーミック接触を得るためのアニール処理を行う。次に、1層以上の金属層から成る第2の接合層41を表面に形成した支持基板40を、第1の接合層39と第2の接合層41とが対向するように異種基板1の上に積層し、加熱圧着して接合する。
【0030】
次に、導電性の支持基板40と接合した異種基板31を実施の形態1と同様にして剥離する(図6D)。即ち、酸又はアルカリであるエッチング液中で異種基板31側からウエハ全面にレーザ光を照射することによって異種基板31の剥離を行う。異種基板31を剥離した後、バッファ層33はレーザ光による熱分解とエッチング液によるエッチングによって除去され、高温成長層34が露出する。
【0031】
次に、高温成長層34を除去し、n型クラッド層35を露出させる(図6E)。ここで、従来であれば高温成長層34の表面に凹凸があるため、CMP等の手法を用いる必要があったが、本実施の形態では高温成長層34の剥離面が鏡面に近い平滑面であるため、ドライエッチング等の手法によって高温成長層34を除去することができる。ドライエッチング等の手法を用いることができれば、電極をつけた際にオーミック性が向上し、Vが低下するため有利である。また、光の取出し効率を向上させるため、光取り出し面となるn型窒化物半導体層の露出面にRIEなどの加工を施すことにより凹凸を形成しても良い。その凹凸の断面形状は、メサ型あるいは逆メサ型、そして、平面形状は島状、格子状、矩形状、円状あるいは多角形状とすることができる。また、窒化物半導体素子表面を被覆する透光性保護膜の表面に凹凸を形成しても良い。
【0032】
次に、露出させたn型クラッド層35の表面をポリッシングした後、n型クラッド層35上にn電極42を形成する一方、支持基板40上にはp電極用パッド電極43を全面に形成する。次に、ダイシングにより発光素子をチップ状に分離する。これにより、支持基板上に窒化物半導体層が積層され、電極が支持基板上に形成された発光素子を得ることができる(図6F)。
【0033】
ここで、本実施の形態における異種基板は、上記実施形態1と同様である。また、異種基板上に窒化物半導体層を積層する場合、実施の形態3として後述するELOG(Epitaxially Lateral Overgrowth)成長により結晶性の向上した窒化物半導体を得ることができる。ELOG成長を用いる場合、図6A〜Dに代えて例えば以下の方法を用いることができる。すなわち、異種基板上に窒化物半導体からなる下地層を形成し、次いで、下地層を部分的に異種基板までエッチングして凹凸を形成する。その後、凹凸を有する下地層上にELOG成長させて横方向成長層を形成する。次いで、横方向成長層の上にn型窒化物半導体層、活性層、p型窒化物半導体層を順次形成した後、p型窒化物半導体層の上に支持基板を接合する。次いで、エッチング溶液中で異種基板の全面にレーザを照射して、下地層を分解及びエッチングすることにより異種基板を剥離する。この方法によれば、上記下地層の凹凸と横方向成長層との間に空隙が形成されるため、その空隙に窒化物半導体の分解により発生した窒素ガスが広がって窒素ガスの圧力による窒化物半導体層の破断を防止すると共に、上記空隙があるためにエッチング液の浸透が容易になり、異種基板の剥離が一層円滑に進む。
【0034】
異種基板としては、上述したように異種基板となる材料の主面をオフアングルさせた基板、さらにステップ状にオフアングルさせた基板を用いるほうが好ましい。オフアングルさせた基板を用いると、表面の3次元成長が見られず、ステップ成長があらわれ表面が平坦になり易い。さらに、ステップ状にオフアングルされているサファイア基板のステップに沿う方向(段差方向)が、サファイアのA面に対して垂直に形成されていると、窒化物半導体のステップ面がレーザの共振器方向と一致し、レーザ光が表面粗さにより乱反射されることが少なくなり好ましい。
【0035】
また、支持基板は導電性を有する基板材料であることが好ましく、例えば、Si、SiC等の半導体基板、金属単体基板、又は相互に非固溶あるいは固溶限界の小さい2種以上の金属の複合体から成る金属基板を用いることができる。中でも、2種以上の金属の複合体から成る金属基板を用いることが好ましい。金属基板は、半導体基板に比べ機械的特性が優れており、弾性変形、さらには塑性変形し易く、割れにくいからである。さらに、金属基板には、Ag,Cu,Au,Pt等の高導電性金属から選択された1種以上の金属と、W,Mo,Cr,Ni等の高硬度の金属から選択された1種以上の金属と、から成るものを用いることができる。さらに、金属基板としては、Cu−WあるいはCu−Moの複合体を用いることが好ましい。熱伝導率の高いCuを有し放熱性が優れているからである。さらに、Cu−Wの複合体の場合、Cuの含有率xが0<x≦30重量%、Cu−Moの複合体の場合、Cuの含有率xが0<x≦50重量%であることが好ましい。また、Cu−ダイヤ等の金属とセラミックスの複合体などを用いることができる。なお、支持基板の厚さは、放熱性を高めるため50〜500μmが好ましい。
【0036】
尚、成長用の異種基板と窒化物半導体層と支持基板との3つの熱膨張係数をそれぞれA、B、Cとしたとき、「A≧C>B」となるように支持基板の材料を選択することが好ましい。支持基板が金属複合体である場合には、複合する金属材料の組成比を制御することによって所望の熱膨張係数にすることができる。例えば、CuとMoとの複合体によって支持基板を構成する場合を考える。Cuの熱膨張係数は、約16×10−6−1であり、Moの熱膨張係数は約5×10−6−1である。従って、支持基板の熱膨張係数を小さくしたい場合には、複合体中のCu組成比を小さくし、熱膨張係数を大きくしたい場合には、Cu組成比を大きくすれば良い。これによって、熱膨張係数の違いによる応力が異種基板を浮き上がらせるように働くようになる。従って、エッチング溶液中でレーザを照射した際に異種基板が一層剥離し易くなる。
【0037】
また、下地層32は、少なくとも1層以上の窒化物半導体で構成することができるが、異種基板31上に低温成長させたバッファ層33と、そのバッファ層33上に高温成長させた高温成長層34とで構成することが好ましい。
【0038】
バッファ層33としては、GaAl1−iN(0<i≦1)からなる窒化物半導体であり、好ましくはAlの割合が小さいもの、より好ましくはGaNを用いることが好ましい。これによりバッファ層上に成長させる窒化物半導体の結晶性が向上する。バッファ層の膜厚は、好ましくは0.002〜0.5μm、より好ましくは0.005〜0.2μm、さらに好ましくは0.01〜0.02μmである。バッファ層の成長温度は、好ましくは200〜900℃、より好ましくは400〜800℃である。
【0039】
高温成長層34としては、好ましくはアンドープのGaN又はn型不純物をドープしたGaNを用いることができる。高温成長層の膜厚は、500Å以上、より好ましくは5μm以上、さらに好ましくは10μm以上である。また、高温成長層の成長温度は、900〜1100℃、好ましくは1050℃以上である。
【0040】
尚、本実施の形態において下地層を除去する際、下地層を完全に除去しなくても、発光の自己吸収を十分抑制できる程度に除去できていれば良い。例えば、上記の例において、発光を自己吸収するGaN層の膜厚が0.1μm、好ましくは0.01μmになるまで除去すれば、自己吸収を十分抑制することができる。GaN層の膜厚が0.1μm以下に薄膜化されている場合、発光の約70%以上を取出すことができ、0.01μm以下に薄膜化されている場合、発光の96%以上を取出すことができる。また、後述する実施形態4により、好適に下地層(第1結晶層)を選択的に除去することができる。
【0041】
また、下地層は、GaNを含む場合に限定されない。その上に成長させるn型窒化物半導体層の結晶性を向上させるような下地層であれば良い。また、その下地層が活性層の発光を自己吸収する窒化物半導体を含む場合は、下地層を除去することによって発光の取出し効率を高めることができる。例えば、GaNに少量の(例えば1%以下の)InやAlを添加した場合であっても、その上に形成する層に比べてInやAlの含有量が十分に少なければ、結晶性を向上させる効果が得られる。そのような下地層を介して素子構造を形成した後、成長用基板と共に下地層を除去することにより、素子を構成する窒化物半導体の結晶性を良好に維持しながら、自己吸収を抑制することができる。
【0042】
ここで活性層の発光を自己吸収する窒化物半導体とは、活性層の発光波長に近いバンドギャップエネルギーを有する結果、発光の吸収が無視できないような窒化物半導体を指す。例えば、窒化物半導体のバンドギャップエネルギー(BGE)が、次式で表されるように、発光ピークエネルギー(PE)よりも0.1eV大きいバンドギャップエネルギーを基準として、その基準よりも小さなバンドギャップエネルギーを持っていれば、活性層の発光を自己吸収する。
(自己吸収する窒化物半導体のBGE)≦(発光PE+0.1eV)
尚、活性層は、InGa1−xN(0≦x<1)を井戸層に有する多重量子井戸構造を有することが好ましい。結晶性の観点からは、Inの混晶比xが0.2以下、より好ましくは0.1以下であることが望ましい。また、活性層の発光波長は365nm以上、420nm以下(より好ましくは410nm以下)であることがより好ましい。
【0043】
また、窒化物半導体のバンドギャップエネルギーと組成の関係については、ボウイングパラメータを1として考えれば良い。例えば3元混晶A1−xCの窒化物半導体のバンドギャップエネルギーは、2元混晶ACとBCのバンドギャップエネルギーをEGAC、EGBCとして、次式で表すことができる。
EG(A1−xC)=(1−x)EGAC+xEGBC−(1−x)x
【0044】
実施の形態3
本実施の形態では、ELOG(Epitaxial Lateral Overgrowth)として知られる横方向成長
法によって窒化物半導体ウエハを製造する例について説明する。即ち、異種基板上に横方向成長法によって窒化物半導体層を形成した後、本件発明の方法を用いて異種基板等を剥離することによって窒化物半導体のみから成る窒化物半導体ウエハを得る。
【0045】
このような横方向成長としては、まず保護膜を使用する方法が挙げられる。例えば、異種基板上若しくはその上に成長させた窒化物半導体上に部分的に保護膜を設ける。そして、該保護膜の開口部(非マスク部)から、保護膜部分より優先的に、好ましくは選択的に窒化物半導体を成長させる。成長した窒化物半導体が保護膜部を覆って互いに接合することにより、膜状の窒化物半導体が形成できる。尚、保護膜としては、上述の通り、選択的、優先的な窒化物半導体の成長を可能とするような材料を選択する。例えば、SiO2からは窒化物半導体が直接成長しないため、SiO2を保護膜に用いることができる。
【0046】
その他の方法としては、(a)異種基板上に窒化物半導体の島状部を設けて、その島状部を横方向成長の成長起点とする方法や、(b)異種基板上の窒化物半導体層の表面若しくは異種基板表面に凹凸を設けて、該凸部を上記窓部と同様に横方向成長のための成長基点とする方法や、(c)窒化物半導体結晶のファセット面を生成してファセット成長させる方法がある。各成長起点から横方向成長した窒化物半導体が互いに接合すること、若しくは凹凸を平坦化することにより、層状の窒化物半導体が形成できる。
【0047】
横方向成長を用いれば、ウエハ内に空隙が形成される場合が有る。このような空隙の例として具体的には、以下のものが挙げられる。
(1)保護膜を用いた横方向成長の場合
例えば、保護膜を用いた横方向成長で、横方向成長した窒化物半導体と保護膜の間に形成される空隙。具体的には、横方向成長の会合部下方において、窒化物半導体層と保護膜との間に形成される空隙。
(2)島状部を用いる横方向成長の場合
島状部同士の間を埋める際にその会合部下方に形成される空隙。
(3)凸部を用いる横方向成長の場合
凸部同士の間(即ち、凹部)を窒化物半導体層が埋める際に、凹部内に形成される空隙

【0048】
異種基板上に横方向成長法によって窒化物半導体層を形成した後、本件発明の方法を用いて異種基板等を剥離すれば、これらの空隙や保護膜によってエッチング溶液が浸透しやすくなる。従って、異種基板等の剥離が促進される。これによって、剥離時の不良発生が低減でき、その歩留まりが向上する。尚、空隙と保護膜のいずれかがあればエッチング液の浸透に寄与するが、両方あることが好ましい。
【0049】
実施の形態4.
本実施の形態では、異種基板ではなく、窒化物半導体層の一部を効率的に除去する方法について説明する。即ち、本実施の形態では、バンドギャップエネルギーの異なる窒化物半導体層を積層した窒化物半導体の積層体から一部の窒化物半導体層を除去する際に、除去したい窒化物半導体層が選択的又は優先的に吸収するようなエネルギーの光を照射しながら酸又はアルカリによるエッチングを行う。これによって、除去する窒化物半導体のエッチング速度差を高めることができ、しかも除去面をより平坦にすることができる。この方法は、例えば、実施の形態1で説明した下地層32を、その上に設けられる窒化物半導体の素子積層構造から効率的に除去するのに用いることができる。
【0050】
図8A〜Fは、本実施の形態の除去方法を示す模式図である。図8Aに示すように、異種基板30上に窒化物半導体の第1結晶層52と窒化物半導体を有する第2結晶層51とを成長したウエハ20を準備する。第1結晶層52は、第2結晶層51よりもバンドギャップエネルギーの小さい窒化物半導体を用いる。例えば、第1結晶層をAlGa1−xN(0≦x<1)とし、第2結晶層の窒化物半導体をAlGa1−yN(0<y≦1、x<y)とする。尚、第2結晶層51内には、素子構造53を形成しておいても良い。素子構造53を有する場合の第1結晶層52と第2結晶層51のバンドギャップエネルギーの関係は後述する。そしてウエハ20から異種基板30を除去して、窒化物半導体ウエハ18を得る。このとき窒化物半導体ウエハ18を、実施の形態1で説明した支持基板40上に固定していても良い。この窒化物半導体ウエハ18から、以下に説明する方法によって第1結晶層52だけを選択的に除去する。
【0051】
まず、図8Bに示すように、第1結晶層52を研磨することが好ましい。酸やアルカリによるエッチングは研磨などの機械的な方法に比べると除去速度が低いため、ある程度の薄膜に第1結晶層52を研磨しておくことによって生産性を上げることができる。また、酸やアルカリによるエッチング時間が短くなるため、第2結晶層51の損傷を防止できる利点もある。例えば、後述するように、第2結晶層51内に第1結晶層52よりバンドギャップエネルギーの小さい層が含まれている場合があるが、その層はエッチング中に溶解による損傷を受けやすい。エッチング時間が短縮できれば、そのような損傷を抑制することができる。
【0052】
尚、異種基板30と窒化物半導体層18の間には、通常、格子定数差や熱膨張係数差が存在している。そのため異種基板30を除去することによって単体化された窒化物半導体ウエハ18は、反りを有していることが多い。反りを有する窒化物半導体ウエハ18に研磨又は通常のエッチングを行うと、図8Bに示すように、研磨又はエッチング後の表面が反りに応じた曲面となり易い。また、研磨又はエッチング後の表面が平坦であっても、結晶の軸配向が面内で反りに応じて順次傾斜し易い。本明細書では、これらの現象を併せて「反りによる曲面化」という。図8Bの例では、異種基板30が設けられていた側の第1結晶層52表面を研磨することで、研磨面が凸曲面となっている。このような状態の窒化物半導体結晶ウエハ18を用いると、その上に結晶学的に平坦な窒化物半導体を成長させることが困難である。ここで「結晶学的に平坦」とは、表面形状が平坦であって、且つ、その表面で結晶の軸配向性が良い(軸が揃っている)ことを指す。
【0053】
そこで本実施形態では、図8Cに示すように、励起光61をウエハに照射しながら窒化物半導体ウエハ18をエッチング槽に浸漬する。エッチング槽内には、実施の形態1で説明したのと同様のエッチング液を用いることができる。また、励起光61の波長は、除去したい第1結晶層52のバンドギャップ波長よりも短いことが好ましい。より好ましくは、励起光61の波長を、第1結晶層52のバンドギャップ波長よりも短くし、第2結晶層のバンドギャップ波長よりも長くする。第1結晶層52及び第2結晶層51のバンドギャップ波長の考え方は実施の形態1で説明したのと同様である。第1結晶層52は、第2結晶層51よりもバンドギャップエネルギーが小さいため、励起光61を選択的又は優先的に吸収する。従って、第1結晶層52は、第2結晶層51に対して選択的、若しくは優先的に溶解する。
【0054】
こうして、図8Dに示すように、第1結晶層52を除去し、第2結晶層51から成る窒化物半導体ウエハを得ることができる。このように光励起によるエッチング処理により、第1結晶51と第2結晶52の間でエッチング速度差をつくり、その結晶界面でエッチングをストップさせて凹凸の少ない平坦な表面51bを得ることができる。このとき第2結晶層52はエッチングストップ層として機能する。
【0055】
エッチングの選択性を確認するため、以下の実験を行った。先ず、サファイア基板上にGaN結晶層を4μm成長したウエハ(GaNウエハ)と、サファイア基板上にAlGa1−yN(y=0.07)結晶層を4μm成長したウエハ(AlGaNウエハ)を準備した。この2種類のウエハをKOH(0.1[mol/L]、pH約13、常温)のエッチング槽に浸漬し、波長365〜400nmの励起光を約4分間照射した。励起光源としては、300〜400nm超高圧水銀ランプに365nm未満をカットするフィルタを適用したものを使用した。その結果、ウエハ上の複数箇所を測定した平均エッチング量は次の通りであった。GaNウエハの平均エッチング量(μm)が、励起光有り、無しでそれぞれ0.325、0.062、AlGaNウエハの平均エッチング量(μm)が、励起光有り、無しでそれぞれ0.108、0.144。この結果から、バンドギャップエネルギーの異なる2種類の結晶層間で、十分なエッチングレート差が設けられることがわかる。従って、例えば第1結晶層52をGaNとし、第2結晶層51をAlGaNとすることにより、選択的に第1結晶層52を除去することができる。また、第1結晶層52と第2結晶層51のエッチングレート差により、両者の界面で好適にエッチングをストップすることができる。従って、第1結晶層52を除去した後の第2結晶層51の表面は、条件を適切にすれば結晶学的に平坦な面にすることができる。このような表面は、結晶成長面として好ましい。
【0056】
第1結晶層をAlGa1−xN(0≦x<1)とし、第2結晶層の窒化物半導体をAlGa1−yN(0<y≦1、x<y)とした場合、Al混晶比差(y−x)を好ましくは0.05以上、更に好ましくは、0.1以上とすることが望ましい。これによって、エッチングレート差を大きくできる。第1結晶層52の組成をAlGa1−xN(0≦x<0.3)とし、第2結晶層51の組成をAlGa1−yN(0.05≦y≦1)とすることが好ましい。さらに好ましくは、第1結晶層52と第2結晶層51のAl混晶比を、それぞれ0≦x<0.1、0.1≦y≦1とする。これによって、第1結晶層52及び第2結晶層51を結晶性よく成長できると共に、第1結晶層52を良好に除去できる。
【0057】
前述の通り、第2結晶層51は、素子積層構造53を有していても良い。素子積層構造53としては、後述の実施例で説明する層35〜37のような層構造がある。このように第2結晶層51が複数の層を有する場合には、第1結晶層52のバンドギャップエネルギーが第2結晶層51中で最も第1結晶層52側にある層、即ち第1結晶層52に接する層のバンドギャップエネルギーよりも大きければ良い。この条件が満たされれば、第2結晶層51の一部の層が第1結晶層52よりバンドギャップエネルギーが小さくても良い。第1結晶層52よりもバンドギャップエネルギーの小さな層と第1結晶層52との間には、第1結晶層52よりもバンドギャップエネルギーの大きな窒化物半導体層を少なくとも設ける。例えば、後述する実施例1では、下地層32が第1結晶層52に該当し、n型AlGaNクラッド層35が第1結晶層52に接する層に該当する。この場合、n型AlGaNクラッド層35よりも下地層32から離れた位置にある層(例えば活性層36)が、下地層32よりもバンドギャップエネルギーが小さくなっていても良い。その場合には、バンドギャップエネルギーの大きなn型クラッド層35により、バンドギャップエネルギーの小さな層(例えば活性層36)が保護される。尚、そのバンドギャップエネルギーの小さな層がエッチング溶液に溶解するような場合には、エッチング工程中、そのバンドギャップエネルギーの小さな層の露出部を被覆部材により保護しても良い。
【0058】
図9は、本実施形態で用いるエッチング装置の一例を示す模式図である。エッチング槽75中のエッチング液10Bを外光を遮断する外囲部76で覆っている。エッチング液10B内に設置したホルダ14にウエハ18を載置する。エッチング槽75の上部をキャップ74で外光を遮断するように覆う。励起光源から光ファイバなどの導光部材64を通じて励起光61をエッチング槽75内に導入する。導光部材64の先端は、保持部材63によってキャップ74に固定している。エッチング工程をモニタリングするモニタ71と通信手段72を装置に設けて、エッチングを監視することができる。これは第1、2結晶層52、51が励起光62により異なる色を帯びて観察されることを利用するものである。第1結晶層52の色が観察されなくなれば、第1結晶層52が完全に除去されたことになる。従って、その時点でエッチングを完了して、エッチング液10Bから取り出すことができる。尚、図9に示すように、ウエハ18の第1結晶層52側の主面に励起光61を照射することが好ましい。但し、第1結晶層52の少なくとも一部の露出部に対してエッチング液10Bが供給され、かつ、励起光61が照射される形態であれば、図9以外の構成を用いても良い。
【0059】
本実施形態の窒化物半導体の除去方法は、実施形態1〜3で異種基板から分離された窒化物半導体ウエハ18に対して、素子構造で不要となる下地層32除去にも用いることができる。また、窒化物半導体ウエハ18の異種基板を分離した面の表面残渣の除去や、分離した面の凹凸を平坦化する、といった表面処理にも適用できる。また、レーザ光による異種基板の剥離以外に、研磨などの他の異種基板の分離方法により単体化された窒化物半導体結晶層にも適用できる。特に、第1結晶層の膜厚(又は第1結晶層と第2結晶層との界面から第1結晶層の表面までの距離)が面内で異なるような窒化物半導体ウエハに適用することが好ましい。また、表面が反りによって曲面化されたウエハに好適に適用される。
【0060】
実施の形態5
本実施の形態では、実施の形態4の励起光61として、ウエハ内の素子構造からの発光を利用する例について説明する。実施の形態4で説明した窒化物半導体の除去方法は、実施形態1乃至3で説明した異種基板の分離方法と異なり、レーザアブレーションでなくても良い。このため励起光61として、レーザ光の他にLED光などを用いることができる。ここで励起光61は、波長若しくは波長域が限定されていることが好ましい。また、励起光61は、波長域の狭い単色性の光や、急峻なスペクトルの光であることが好ましい。例えば、LED光や高圧水銀ランプの光を用いることができる。また、これらの光照射によっても、バンドギャップエネルギーの異なる結晶では物体色若しくは蛍光色が異なる。そこで、その色を観察することで、エッチング制御や研磨制御が可能となる。
【0061】
LED光を励起光に用いる場合について図10A及びBを参照しながら説明する。図10Aに示すように、n型クラッド層35、活性層36及びp型クラッド層37を含むLED素子構造53を第2結晶層51中に形成する。このLED素子構造53からの発光を、励起光61として利用する。LED素子の発光スペクトルはレーザに比べてブロードであるため、発光のピーク波長が必ずしも第1結晶層52のバンドギャップ波長より短くなくても良い。LED素子53の発光スペクトル中に第1結晶層52のバンドギャップ波長よりも短い成分が相当程度に含まれていれば良い。従って、LED素子構造53からの発光波長が、第1結晶層52のバンドギャップをEとして(E+0.1eV)に対応するバンドギャップ波長よりも短くなるようにすることが好ましい。尚、ここで「発光波長」とは発光スペクトルのピーク波長を指す。LED素子の発光波長としては、365nm以上420nm以下(より好ましくは410nm以下)が好ましい。図10Aに示すように、窒化物半導体ウエハの上下面に、LED素子構造53に通電可能な電極81、82を設ける。図10Aでは、第2結晶層51の第1結晶層52と反対側にある面51aに電極82を形成し、第1結晶層52の第2結晶層51と反対側にある面に電極81を形成している。
【0062】
そして図10Bに示すように、少なくとも第1結晶層と第2結晶層との界面51bと第1結晶層52の一部が露出するように窒化物半導体ウエハ18を被覆部材83及び84で覆う。この被覆部材83及び84は、電極81及び82の各々に通電するための外部電極を兼ねている。そして、窒化物半導体ウエハ18をエッチング槽に浸漬し、上記露出部をエッチング溶液に晒しながら、電極81及び82に通電してLED素子53を発光させる。このLED素子53の発光が励起光61となる。LED素子53の発光が第1結晶層52に吸収されることにより、第1結晶層52のエッチング速度が高くなり、第1結晶層52が選択的或いは優先的にエッチングされる。尚、本実施の形態のような例では、LED素子53中の活性層36がエッチング液によって損傷を受けやすい。従って、活性層36がエッチング液中に露出しないように被覆部材84で覆うことが好ましい。
【実施例1】
【0063】
図6A〜Fに示す窒化物半導体素子を以下の手順によって製造した。
(異種基板31)
成長用の異種基板31として、サファイア(C面)よりなる基板を用い、MOCVD反応容器内において水素雰囲気中、1050℃で表面のクリーニングを行った。
【0064】
(下地層32)
バッファ層33:続いて、水素雰囲気中、510℃でアンモニアとTMG(トリメチルガリウム)を用い、基板上にGaNよりなるバッファ層33を約200Åの膜厚で成長させた。
高温成長層34:バッファ層33成長後、TMGのみを止めて、温度を1050℃まで上昇させ、1050℃になったら、原料ガスにTMG、アンモニアを用い、アンドープGaNよりなる高温成長の窒化物半導体34を5μmの膜厚で成長させた。
【0065】
(n型クラッド層35)
次に、1050℃でTMG、TMA、アンモニア、シランを用い、Siを5×1017/cmドープしたn型Al0.18Ga0.82Nよりなるn型クラッド層35を400Åの膜厚で形成した。
【0066】
(活性層36)
次に、温度を800℃にして、原料ガスにTMI(トリメチルインジウム)、TMG、TMAを用い、SiドープのAl0.1Ga0.9Nよりなる障壁層、その上にアンドープのIn0.03Al0.02Ga0.95Nよりなる井戸層を、障壁層(1)/井戸層(1)/障壁層(2)/井戸層(2)/障壁層(3)の順に積層した。この時、障壁層(1)を200Å、障壁層(2)と(3)を40Å、井戸層(1)と(2)を70Åの膜厚で形成した。活性層は、総膜厚約420Åの多重量子井戸構造(MQW)となる。
【0067】
(p型クラッド層37)
次に、水素雰囲気中、1050℃でTMG、TMA、アンモニア、CpMg(シクロペンタジエニルマグネシウム)を用い、Mgを1×1020/cmドープしたAl0.2Ga0.8Nよりなるp型クラッド層37を600Åの膜厚で成長させた。
【0068】
(p型コンタクト層38)
続いて、p型クラッド層37上に、TMG、TMA、アンモニア、CpMgを用いて、Mgを1×1019/cmドープしたAl0.04Ga0.96Nよりなる第1のp型コンタクト層を0.1μmの膜厚で成長させ、その後、ガスの流量を調整してMgを2×1021/cmドープしたAl0.01Ga0.99Nよりなる第2のp型コンタクト層を0.02μmの膜厚で成長させた。成長終了後、窒素雰囲中、ウエハを反応容器内において、700℃でアニーリングを行い、p型層をさらに低抵抗化した。
【0069】
(第1の接合層39)
アニーリング後、ウエハを反応容器から取出し、p型コンタクト層の上にRh膜を膜厚2000Åで形成してp電極とした。その後、オーミックアニールを600℃で行った後、p電極以外の露出面に絶縁性の保護膜SiOを膜厚0.3μmで形成した。
【0070】
次に、p電極の上に、Ni−Pt−Au−Sn−Auの多層膜を、膜厚2000Å−3000Å−3000Å−30000Å−1000Åで形成した。ここでで、Niは密着層、Ptはバリア層、Snは第1の共晶形成層、そしてPtとSnの間のAu層は、Snがバリア層へ拡散するのを防止する役割を果たし、最外層のAu層は第2の共晶形成層との密着性を向上させる役割を果たす。
【0071】
(支持基板40、第2の接合層41)
一方、導電性の支持基板40として、膜厚が200μmで、Cu30%とW70%の複合体から成る金属基板を用い、その金属基板の表面に、Tiから成る密着層、Ptから成るバリア層、そしてAuから成る第2の共晶形成層を、この順で、膜厚2000Å−3000Å−12000Åで形成した。
【0072】
(Cu−W支持基板40の固着)
次に、第1の接合層39と第2の接合層41とを対向させた状態で、接合用積層体と支持基板40とを、ヒータ温度を250℃でプレス加圧して加熱圧接した。これにより、第1の共晶形成層と第2の共晶形成層の金属を互いに拡散させて共晶を形成させた。
【0073】
(サファイア基板31の剥離)
次に、上記固着させたウエハを処理液に浸漬させた容器を、レーザ照射装置に搬入して、その容器が載せられたステージを動かしウエハ面内を、パルスレーザ光で走査する。このとき、パルス振幅は20Hz、照射面におけるレーザ線幅は100μm、レーザ強度90〜200mJ、ステージの移動速度(レーザの走査速度)は1mm/sとする。剥離時のレーザ強度は、1J/cm以上であることが好ましい。そして、さらに露出したバッファ層33または高温成長層34を研磨して、n型クラッド層のAlGaN層35が露出するまで研磨した。尚、ここで研磨に代えてドライエッチングによって高温成長層34を除去しても良い。
【0074】
(n電極42)
次に、n型コンタクト層35上に、Ti−Al−Ti−Pt−Auから成る多層電極を、膜厚100Å−2500Å−1000Å−2000Å−6000Åで形成してn電極42とした。その後、導電性基板を100μmまで研磨した後、導電性基板の裏面にp電極用のパッド電極として、Ti−Pt−Auから成る多層膜を1000Å−2000Å−3000Åで成膜した。最後に、ダイシングにより素子を分離して紫外発光の窒化物半導体素子が完成した。
【0075】
[比較例1]
サファイア基板31の剥離を大気中でエキシマレーザを照射して行う他は、実施例1と同様にして窒化物半導体素子を製造した。
【0076】
実施例1と比較例1において、サファイア基板31を除去した後のウエハ表面を観察した写真を図7A及び図7Bに示す。図7A及びBにおいて、黒く見える領域はGaN高温下地層等の窒化物半導体層が残っている領域であり、白く見える領域は窒化物半導体層の下側にあるCu−W支持基板40が露出した領域である。図7A及びBからわかるように、比較例1において大気中でエキシマレーザを照射した場合(=図7B)、かなりの窒化物半導体層がサファイア基板31と共に剥がれてしまったのに対し、実施例1のようにKOHエッチング溶液中でエキシマレーザを照射してサファイア基板31を剥離した場合(=図7A)には、窒化物半導体層の剥がれは殆ど発生しなかった。最終的なウエハあたりの製造歩留まりは、実施例1が約90%であるのに対し、比較例1では約60%であった。
【実施例2】
【0077】
実施例1においてサファイア基板を剥離したウエハ18を用意し、それを図9に示すようなエッチング装置に導入する。そして、図8A〜Dに示す手順に従って、第1結晶層52である下地GaN層32を選択的に除去する。以下、それについて説明する。
【0078】
図8Aに示すように、支持基板40に接着された窒化物半導体ウエハ18を準備する。図8Bに示すように、異種基板30が設けられていた第1結晶層52の表面(=第2結晶層との界面51bに対向する面)をCMPにより研磨して薄くする。このとき窒化物半導体ウエハ18に反りがあるため、第1結晶層52の表面が凸曲面となる。次に、図8Cに示すように、窒化物半導体ウエハ18をKOHのエッチング溶液に浸漬させ、波長365nmの紫外線を励起光61として照射する。この励起光は、LED光源から発光させる。励起光61を、窒化物半導体ウエハの第1結晶層52の表面(=研磨面)に照射する。それにより、図8Dに示すように、完全に第1結晶層52が除去される。第2結晶層51の表面51bが露出したら、励起光61の照射を止めて、エッチング溶液からウエハを取り出す。このようにして得られる第2結晶層52は、表面51bの平坦性が良好となる。従って、その第2結晶層52を用いれば、量産性良く、素子を製造できる。
【図面の簡単な説明】
【0079】
【図1】図1は、実施の形態1における異種基板の剥離工程を示す模式図である。
【図2】図2は、結晶成長ウエハ上にレーザ光を照射する様子を模式的に示す上面図である。
【図3】図3は、レーザ光の強度分布の一例を示すグラフである。
【図4A】図4Aは、大気中でレーザ光照射を行った場合の異種基板−窒化物半導体層界面の様子を模式的に示す断面図であり、レーザ光の走査方向に平行な断面を示す。
【図4B】図4Bは、大気中でレーザ光照射を行った場合の異種基板−窒化物半導体層界面の様子を模式的に示す断面図であり、レーザ光の走査方向に垂直な断面を示す。
【図5】図5は、実施の形態1で用いるレーザ照射装置を示す概略図である。
【図6A】図6Aは、実施の形態2に係る窒化物半導体素子の製造方法を示す工程図の一部である。
【図6B】図6Bは、実施の形態2に係る窒化物半導体素子の製造方法を示す工程図の一部である。
【図6C】図6Cは、実施の形態2に係る窒化物半導体素子の製造方法を示す工程図の一部である。
【図6D】図6Dは、実施の形態2に係る窒化物半導体素子の製造方法を示す工程図の一部である。
【図6E】図6Eは、実施の形態2に係る窒化物半導体素子の製造方法を示す工程図の一部である。
【図6F】図6Fは、実施の形態2に係る窒化物半導体素子の製造方法を示す工程図の一部である。
【図7A】図7Aは、実施例1における異種基板剥離後の窒化物半導体層の様子を示す写真である。
【図7B】図7Bは、比較例1における異種基板剥離後の窒化物半導体層の様子を示す写真である。
【図8A】図8Aは、実施の形態4における第2結晶層の除去工程の一部を示す模式断面図である。
【図8B】図8Bは、実施の形態4における第2結晶層の除去工程の一部を示す模式断面図である。
【図8C】図8Cは、実施の形態4における第2結晶層の除去工程の一部を示す模式断面図である。
【図8D】図8Dは、実施の形態4における第2結晶層の除去工程の一部を示す模式断面図である。
【図8E】図8Eは、実施の形態4における第2結晶層の除去工程の一部を示す模式断面図である。
【図9】図9は、実施の形態4で用いる結晶溶解装置を示す概略図である。
【図10A】図10Aは、実施の形態5における第2結晶層除去工程の一部を示す模式断面図である。
【図10B】図10Bは、実施の形態5における第2結晶層除去工程の一部を示す模式断面図である。
【符号の説明】
【0080】
1 レーザ照射装置、3 レーザ光、4 励起光源(具体例:紫外線光)、8 エッチング槽、10 エッチング液、16 異種基板、18 窒化物半導体層、20 結晶成長ウエハ、30 窒化物半導体成長基板、40 支持基板、51 第1結晶層(具体例:GaN下地層、51a 成長側主面、51b 基板側主面)、52 第2結晶層(具体例:AlGaN系素子構造)、53 素子構造、61 励起光

【特許請求の範囲】
【請求項1】
窒化物半導体と異なる異種基板上に成長された窒化物半導体層から、前記異種基板を剥離する工程を備えた窒化物半導体ウエハの製造方法であって、
前記異種基板の剥離を、前記異種基板−窒化物半導体界面に酸又はアルカリであるエッチング溶液を供給しながら、前記異種基板側から前記窒化物半導体層のバンドギャップ波長よりも短波長のレーザ光を照射して行うことを特徴とする窒化物半導体ウエハの製造方法。
【請求項2】
前記エッチング溶液が、KOH、硫酸、リン酸、フッ酸、ピロリン酸からなる群から選択された1種であることを特徴とする請求項1に記載の窒化物半導体ウエハの製造方法。
【請求項3】
前記レーザ光を、線状のビーム形状にして、前記異種基板上で走査させることを特徴とする請求項1又は2に記載の窒化物半導体ウエハの製造方法。
【請求項4】
前記異種基板上に窒化物半導体層を成長した後、前記窒化物半導体層に支持基板を固着し、前記窒化物半導体層から前記異種基板を剥離することを特徴とする請求項1乃至3のいずれか1項に記載の窒化物半導体ウエハの製造方法。
【請求項5】
前記剥離された窒化物半導体ウエハが、窒化物半導体の下地層と、該下地層上に設けられた、紫外発光可能な活性層を含む素子積層構造と、を有し、
前記下地層が前記素子積層構造の前記下地層に最も近い部分よりも小さいバンドギャップエネルギーを有し、
前記窒化物半導体ウエハを酸又はアルカリであるエッチング溶液に浸漬しながら、前記下地層のバンドギャップ波長よりも短波長の励起光を照射することにより、
前記窒化物半導体ウエハから前記下地層を除去することを特徴とする請求項1乃至4のいずれか1項に記載の窒化物半導体ウエハの製造方法。
【請求項6】
前記励起光が、前記活性層の発光であることを特徴とする請求項5記載の窒化物半導体ウエハの製造方法。
【請求項7】
請求項1乃至6のいずれか1項に記載の方法で製造された窒化物半導体ウエハを用いて製造した窒化物半導体素子。
【請求項8】
窒化物半導体と異なる異種基板上に素子形成用の複数の窒化物半導体層を成長し、前記窒化物半導体層の最上層表面に支持基板を固着し、前記窒化物半導体層から前記異種基板を剥離する工程を備えた窒化物半導体素子の製造方法であって、
前記異種基板の剥離を、前記異種基板−窒化物半導体界面に酸又はアルカリであるエッチング溶液を供給しながら、最も異種基板側にある前記窒化物半導体層のバンドギャップ波長よりも短波長のレーザ光を前記異種基板側から照射して行うことを特徴とする窒化物半導体素子の製造方法。
【請求項9】
前記窒化物半導体素子が活性層から紫外線を発光する紫外発光素子であり、
前記最も異種基板側にある窒化物半導体層が、前記活性層の発光を自己吸収する材料からなると共に、前記異種基板の剥離後に除去されることを特徴とする請求項8に記載の窒化物半導体素子の製造方法。
【請求項10】
前記最も異種基板側にある窒化物半導体層を、前記エッチング溶液の供給下で、前記活性層の発光波長よりも短波長の励起光を照射して除去することを特徴とする請求項8記載の窒化物半導体素子の製造方法。
【請求項11】
前記最も異種基板側にある窒化物半導体層のバンドギャップエネルギーをEとして、前記活性層の発光波長が(E+0.1eV)に対応するバンドギャップ波長より短いことを特徴とする請求項10記載の窒化物半導体素子の製造方法。
【請求項12】
前記励起光が、前記活性層の発光であることを特徴とする請求項11記載の窒化物半導体素子の製造方法。
【請求項13】
半導体ウエハにレーザ光を照射するためのレーザ照射装置であって、
レーザ光源と、
酸又はアルカリであるエッチング溶液を保持するエッチング槽と、
前記エッチング槽内に設置されたウエハ保持用のホルダと、
前記ホルダに保持されたウエハの全面に前記レーザ光源から出射したレーザ光を照射するための照射光学系と、
を備えたレーザ照射装置。
【請求項14】
前記照射光学系が、前記レーザ光源から出射したレーザ光を線状のビーム形状とし、前記ホルダに保持されたウエハ全面を走査させることを特徴とする請求項13に記載のレーザ照射装置。
【請求項15】
窒化物半導体と異なる異種基板上に窒化物半導体層を成長した後、前記異種基板を剥離して形成された窒化物半導体ウエハであって、
前記異種基板剥離後の表面粗さが10nm以下の鏡面であることを特徴とする窒化物半導体ウエハ。
【請求項16】
前記窒化物半導体層が、支持基板上に固着されていることを特徴とする請求項15に記載の窒化物半導体ウエハ。
【請求項17】
窒化物半導体から成る第1結晶層の上に該第1結晶層よりバンドギャップエネルギーが大きい窒化物半導体を少なくとも有する第2結晶層を積層して窒化物半導体の積層体を形成する工程と、
前記窒化物半導体の積層体を、酸又はアルカリであるエッチング溶液に浸漬させながら、前記第1結晶層のバンドギャップ波長より短波長の光を少なくとも前記第1結晶層に照射して第1結晶層を除去する工程と、
を具備する窒化物半導体ウエハの製造方法
【請求項18】
前記窒化物半導体の積層体形成工程において、前記第2結晶層の形成後に前記第1結晶層を研磨する工程を具備し、
前記研磨後の前記第1結晶層の膜厚が不均一であることを特徴とする請求項17記載の窒化物半導体ウエハの製造方法。
【請求項19】
前記窒化物半導体の積層体形成工程において、前記第1結晶層と前記第2結晶層とが窒化物半導体と異なる材料の異種基板の上に形成された後、前記異種基板が除去され、前記異種基板を除去した後の前記積層体が反りを有することを特徴とする請求項18記載の窒化物半導体ウエハの製造方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図6D】
image rotate

【図6E】
image rotate

【図6F】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図8D】
image rotate

【図8E】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate


【公開番号】特開2006−60200(P2006−60200A)
【公開日】平成18年3月2日(2006.3.2)
【国際特許分類】
【出願番号】特願2005−210336(P2005−210336)
【出願日】平成17年7月20日(2005.7.20)
【出願人】(000226057)日亜化学工業株式会社 (993)
【Fターム(参考)】