説明

Fターム[5H007CA01]の内容

インバータ装置 (60,604) | スイッチング素子 (5,393) | トランジスタ (5,228)

Fターム[5H007CA01]の下位に属するFターム

Fターム[5H007CA01]に分類される特許

201 - 220 / 3,640


【課題】受熱ブロックの半導体取付面における温度バランスを良くし、冷却性能を向上することができる車両用半導体冷却装置を提供する。
【解決手段】車両用半導体冷却装置は、受熱ブロック、複数の半導体素子の列、放熱部材を備える。前記受熱ブロックは第1の面とこの第1の面の反対側に第2の面とを有する。前記複数の半導体素子の列は、前記受熱ブロックの第1の面に、発熱量が互いに異なる半導体素子の列どうしが交互に配置されている。前記放熱部材は前記受熱ブロックの第2の面に、長手方向端部が車両進行方向に一致するように配設されている。 (もっと読む)


【課題】インバータの対地浮遊容量を低減するとともに、インバータに対する冷却性能の低下防止の構造体を提供する。
【解決手段】互いに直列に接続された一対の半導体素子16,18と、ヒートシンク7と、前記第1の端子の一方の第1の端子12と、前記一対の半導体素子の一方の半導体素子16の一方の電極とのそれぞれに電気的に接続された第1の電極10と、前記第2の端子13と、前記一対の半導体素子の他方の半導体素子18の一方の電極とのそれぞれに電気的に接続された出力電極11と、前記第1の端子の他方の第1の端子14に電気的に接続された第2の電極9と、を備える半導体モジュールであって、前記第2の電極9が、第1の絶縁部材8aを介して前記ヒートシンク7に接続され、前記出力電極11が、第2の絶縁部材8bを介して前記第2の電極9に接続されている。 (もっと読む)


【課題】商用電源と蓄電池を併用する場合においても、小型で安価な構成の効率の高いインバータ制御回路を提供することを目的とする。
【解決手段】インバータ制御回路は商用電源1を入力とし、交流電圧を整流する全波整流用ダイオードブリッジ3と、全波整流用ダイオードブリッジ3に接続され整流された電圧を昇圧する昇圧回路6と、昇圧回路6の入力側に蓄電池4を有し、商用電源1または蓄電池4のいずれか一方を電源として使用するための切換え手段と、直流電力から交流電力に変換するインバータ9と、インバータ9を制御しPWM制御またはPAM制御でモータ10を駆動する制御手段12とを備え、制御手段12は、商用電源1を電源として使用する場合は、PWM制御でモータ10を駆動し、蓄電池4を電源として使用する場合は、PAM制御でモータ10を駆動させる構成とした。 (もっと読む)


【課題】スイッチング素子を複数並列に接続して逆変換器等を構成した場合にも簡易かつ確実に電流アンバランスを解消することができる電力変換装置を提供する。
【解決手段】ゲート調整回路12は、基準素子ユニット501における直流電流検出器541の直流電流の検出値Id1および、基準素子ユニット501以外の素子ユニット502における直流電流検出器542の直流電流の検出値Id2に基づいて、それぞれ時間γ1および時間γ2から時間差Δtを電流アンバランス量として算出する。ゲート調整回路12は、時間差Δtを次の第1状態におけるターンオフのタイミングで、ゲート駆動回路552uの動作信号S2uに遅延時間として付加する。 (もっと読む)


【課題】平滑コンデンサの放電を、より迅速に行なえる回転電機の駆動システムを提供する。
【解決手段】MG駆動用コンピュータ18は、衝突または衝突の可能性が検知された場合、システムリレーSR1,SR2をオフする。また、回転電機10の回転数を低減する回転数低減制御と、平滑コンデンサ14を放電する放電制御とを実行する。回転数低減制御においては、回転電機10の回転数が第二閾値以下の場合には、インバータ12の上アームまたは下アームの三相分のスイッチング素子をオンにし、他をオフにする三相オン制御を行なう。回転数が第二閾値超過の場合は、上アームまたは下アームの一相分のスイッチング素子をオンにし、他をオフにする一相オン制御を行なう。 (もっと読む)


【課題】コストの増大を招くことなく、スイッチングデバイスのターンオン、ターンオフ時のリンギングを抑制した半導体装置を提供する。
【解決手段】端子P’とトランジスタT1のコレクタとの間には、端子P’にカソードが接続され、コレクタにアノードが接続されたダイオードDが設けられている。また、端子Pと端子Nとの間には、端子P側から抵抗RおよびコンデンサCが、この順に直列に接続されており、コンデンサCと平滑コンデンサC0とはPN線間に並列に接続された構成となっている。なお、端子P’は、抵抗RとコンデンサCとの間に接続されている。 (もっと読む)


【課題】部品点数を削減した3レベル電力変換装置を提供する。
【解決手段】3レベル電力変換装置において、素子を繋ぐ配線構成を3相個別配線から3相一体型配線に変更することで、配線インダクタンスを下げ、素子のサージ電圧を抑制し、従来の電力変換装置に付加してきた相コンデンサ方式スナバ回路を省略し、装置構成を単純化し、低コスト化、小形化を図る。 (もっと読む)


【課題】補機電源供給部を有する電力変換装置の、直流電源分岐構造を簡略化した構造を提供することにある。
【解決手段】上記課題解決のために、直流バスバーにおいてバッテリ側の電源と接続する主部の中間部分あたりからバスバーを枝分かれする構成とし、枝分かれした部分から直流電源を補機に供給し、交流・直流インターフェイスを一面に集約するように構成すればよい。このように構成することで、補機用にバスバーを追加することなく電源を分岐することが可能になり、部品点数の削減・接続構造の簡略化が期待できるとともに車載性が向上する。 (もっと読む)


【課題】複数個のパワー半導体スイッチング素子を並列接続する場合、入出力端子間において各パワー半導体スイッチング素子の接続導体を含んだ総合インダクタンスを均等にすることを可能にして、さらに直流コンデンサのリプル低減と両立した三相半導体電力変換装置を提供することにある。
【解決手段】偶数個の半導体パッケージを6群の半導体パッケージ毎にインバータユニットを構成し、前記6群の半導体パッケージは2群ずつ組にしてそれぞれの組をU相,V相,W相とし機能させ、前記6群の半導体パッケージ群を、同じP側直流ブスバーとN側直流ブスバーで接続し、該P側ブスバーと該N側ブスバーを薄い絶縁層を挟んで、対向した構成にすることにより直流ブスバーを低インダクタンス化して、U相,V相,W相間の直流ブスバーのインダクタンスを低インダクタンス化することにより、直流コンデンサのリプル電流を低減しする。 (もっと読む)


【課題】半導体電力変換装置内で使用されている素子の温度上昇を均一化することにより、半導体電力変換装置内の素子が発熱により破壊されることを防ぐ、半導体電力変換装置の熱破壊保護装置を提供する。
【解決手段】半導体電力変換装置において、該半導体電力変換装置に使用されている素子毎に、各素子の許容温度からの温度余裕度を算出し、前記温度余裕度が低い素子の導通率を下げるように半導体電力変換装置を制御し、半導体電力変換装置内で使用されている素子の温度上昇を均一化する。 (もっと読む)


【課題】電力変換器に入力するゲートパルス信号の生成時において、搬送波の周波数の変化に伴い、前記搬送波の位相を変調させ、複数の搬送波の位相差を所定の値に保つようにする。
【解決手段】電源から供給される交流電圧を直流電圧に変換し、前記直流電圧を所望の周波数の交流電圧に変換する複数の電力変換器に対して、出力電圧指令値と搬送波の比較から生成したゲートパルス信号を入力し、前記複数の電力変換器から交流電動機に出力させる交流電圧を制御する電力変換器制御装置において、前記複数の電力変換器を各相に備え、各相における複数の電力変換器から出力される複数の交流電圧から求めた各相の出力電圧を前記交流電動機に出力させるとき、同相における複数の電力変換器に対する複数の搬送波の位相差を所定の値に保つように、前記複数の搬送波のうち少なくとも一つの搬送波の位相を変調させる。 (もっと読む)


【課題】高電圧バッテリ10に接続される部材(インバータINV1〜INV4)が増加すると、高電圧バッテリ10と車体との間の浮遊容量が大きくなったり、絶縁抵抗の抵抗値が小さくなったりすることで、これら浮遊容量や絶縁抵抗に起因したインピーダンスが低下し、絶縁不良の診断精度の低下を招くおそれがあること。
【解決手段】製品出荷に先立ち、高電圧バッテリ10にインバータINV1〜INV4が接続され、これらが車体に搭載された後、出力部40から診断信号dsを出力する。そして、これに伴う抵抗体42およびコンデンサ44間の電位の変動量に基づき、絶縁不良の有無を判断する判定値を生成して、不揮発性メモリ48に記憶する。 (もっと読む)


【課題】P型電界効果トランジスタとN型電界効果トランジスタとが同時にオン状態になる期間内で発生する短絡電流に起因する消費電力の増大を抑制するともに、パワー素子を高速スイッチングさせることが可能なゲート駆動回路を提供する。
【解決手段】このゲート駆動回路11は、PchFET12と、NchFET13と、駆動信号が入力される入力側とPchFET12のゲート(G)およびNchFET13との間に設けられ、電源電位VCCに接続されているツェナーダイオード14およびツェナーダイオード15とを備え、ツェナーダイオード14および15は、PchFET12およびNchFET13のゲート(G)に印加される電圧を、PchFET12およびNchFET13のゲート(G)の閾値電圧側にシフトさせるように構成されている。 (もっと読む)


【課題】大容量インバータを小型で比較的容易に作製することが可能な電力変換装置を提供する。
【解決手段】電力変換装置10は、直流電源からの直流電力を交流電力に変換する複数の単相インバータ部16a,16b,16cの交流側を直列接続して単相多重変換器を構成し3相負荷11に電力供給する。単相多重変換器内の複数の単相インバータ部16a,16b,16cを、異なる種類のスイッチング素子で構成し、発生電圧が低い単相インバータ部16aはスイッチング速度が速いGaN系の化合物半導体で形成されたスイッチング素子で構成する。発生電圧が高い単相インバータ部16b,16cはオン電圧が低いSiC系の化合物半導体で形成されたスイッチング素子で構成する。 (もっと読む)


【課題】並列接続されたコンデンサの電流バランスを調節することを課題とする。
【解決手段】温度が上昇するにつれて、静電容量が小さくなる、規格容量の同じコンデンサ2が、複数並列に接続されていることを特徴とするコンデンサ回路1を提供する。また、このコンデンサ回路を、直流電源から供給される電流量の変動を平滑化するための直流コンデンサ回路や、特定の周波数に対し帯域制限をかけるためのフィルタコンデンサ回路や、電流の遮断時に生じる過渡的な高電圧を吸収するためのスナバコンデンサ回路に用いている電力変換装置を提供する。 (もっと読む)


【課題】チョッパ型のコンバータにおいて、各スイッチング素子の冷却性能を保ちつつ、小型化および低コスト化を実現する。
【解決手段】コンバータ10は、制御装置30からの信号PWCに基づいて、正極線PL2および負極線NL間の電圧を直流電源Bの出力電圧以上の電圧に昇圧する。コンバータ10は、直流電源Bの正極に一端が結合されるリアクトルL1と、リアクトルL1の他端と正極線PL2との間に設けられる第1スイッチング素子Q1と、リアクトルL1の他端と直流電源Bの負極との間に設けられる第2スイッチング素子Q2とを備える。第1スイッチング素子Q1は、第2スイッチング素子Q2よりも、素子面積が小さくなるように形成される。 (もっと読む)


【課題】キャリア同期方式のメリットを生かし、直流電源の電圧と電流の振動を抑制する。
【解決手段】4以上の整数M個の巻線且つ4以上の整数N相の巻線を有し、各巻線相互間は電気的に絶縁され、かつ磁気的に結合された多相電動機1と、各巻線にそれぞれ接続され、直流電力を交流電力に変換する4以上の整数N台の単相パルス幅変調方式のインバータ回路11と、各11の内、第1と第2のインバータの間に対してキャリアの位相を位相角だけシフト、第2と第3のインバータの間に対してキャリアの位相を位相角だけシフトさせるという方法を繰り返すことにより、各11の線間電圧のオンするタイミングが分散するように各制御回路のキャリアの位相をシフトさせる位相補正回路とを備え、巻線数Mが相数N、インバータの台数Nの整数倍となるように構成し、各11の出力に1の巻線数M/Nだけ並列接続した多相電動機駆動装置。 (もっと読む)


【課題】放電回路20の抵抗体に異常が生じる場合であっても、コンデンサ17の放電経路を確保することのできるコンデンサの放電回路を提供する。
【解決手段】高圧バッテリ16と、一対の入力端子を有して且つこれら入力端子を介して高圧バッテリ16と接続されるインバータ12と、上記一対の入力端子間に接続されるコンデンサ17とを備える電力システムがある。こうしたシステムにおいて、インバータ12の有する一対の入力端子間には、高抵抗体26,28の並列接続体が接続されている。これら高抵抗体26,28のそれぞれは、複数の抵抗体の直列接続体である。 (もっと読む)


【課題】還流ダイオードの逆回復による損失を低減し、スイッチング時に発生する振動を抑制する電力変換装置を提供することにある。
【解決手段】電力変換装置1は、対になる2つのスイッチング素子4a,4bと、スイッチング素子4a,4bのそれぞれに逆並列に接続された還流ダイオード5a,5bと、スイッチング素子4a,4bに印加される主電圧よりも低い電圧の補助電源21a,21bと、スイッチング素子4aのターンオフ後からスイッチング素子4bのターンオンまでの間に、スイッチング素子4a及び還流ダイオード5aに補助電源21aの電圧を印加し、スイッチング素子4aのターンオン動作中に、スイッチング素子4aのスイッチング速度を変化させる主素子制御回路6aとを備える。 (もっと読む)


【課題】1台のインバータの電力変換部が故障した場合でも、残りのインバータを継続的に運転可能としてシステム全体の非常停止を回避する。
【解決手段】並列接続されたマスターインバータ2a及びスレーブインバータ2b,2cが、電動機1を駆動する電力変換部4a,4b,4cと制御装置5a,5b,5cとを備える。制御装置5aは、速度制御部12と、電流制御部14と、電圧指令に従って電力変換部4aを制御するためのゲート駆動信号生成部8aと、を備える。制御装置5b,5cは、前記電流制御部14により演算された電圧指令Vurに従って電力変換部4b,4cを制御するためのゲート駆動信号生成部8b,8cを備える。制御装置5aは、何れかのインバータの電力変換部の故障時に、残りの電力変換部の電流容量に応じて、速度制御部12により電流指令Itrを減少させるように再設定する。 (もっと読む)


201 - 220 / 3,640