説明

Fターム[5H029HJ06]の内容

二次電池(その他の蓄電池) (156,093) | 数値限定、大小、範囲の特定 (19,126) | 寸法 (3,416) | 孔径 (237)

Fターム[5H029HJ06]に分類される特許

41 - 60 / 237


【課題】 内部抵抗を低減するとともに、負極に短時間でリチウムイオンをドープさせ、さらに均一な電極化が図られた蓄電デバイスを提供する。
【解決手段】 リチウムイオンを含有する非水系電解液7と、リチウム供給源6と、アニオンまたはカチオンを可逆的に担持可能な正極と、リチウムイオンを可逆的にドープ可能な負極を備え、セパレータ3を介して正極と負極を交互に積層するユニットで構成される蓄電デバイスであって、集電体に正極活物質または負極活物質を含む電極塗料を片面もしくは両面に塗工した正極または負極について、平均直径が0.3μm以上1.0μm以下の貫通孔を有し、かつ開孔率が0.1%以上1.0%以下の集電体を用いる。 (もっと読む)


【課題】非水電解質二次電池用負極活物質において、充放電による負極活物質一次粒子の体積変化を抑制して、電池のサイクル寿命特性の向上を図る。
【解決手段】シリコンまたはスズのいずれかと、リチウムとの反応性を有しない金属元素から選ばれた少なくとも一種の元素とからなり、かつ、一次粒子内部の内核部6と外周部7のいずれにも空孔5が形成されていることで、充放電による活物質粒子の体積変化が非局在化され、活物質粒子の構造崩壊が抑制される。 (もっと読む)


【課題】集電体として機能するアルミニウム多孔体の表面の酸素量が少なく、活物質の利用率を向上させることができる非水電解質電池用電極、及びそれを備える非水電解質電池を提供する。
【解決手段】非水電解質電池用電極は、アルミニウム多孔体に活物質が充填されたものであり、アルミニウム多孔体の表面の酸素量が3.1質量%以下である。また、アルミニウム多孔体が、一方の面から他方の面に向かって厚さ方向に、気孔径の大きい大孔径領域とこれより気孔径の小さい小孔径領域とを有する。このアルミニウム多孔体は、連通孔を有する樹脂体1fの樹脂1表面にアルミニウム層2を形成した後、その樹脂体(アルミニウム層被膜樹脂体3)を溶融塩に浸漬した状態で、アルミニウムの標準電極電位より卑な電位をアルミニウム層2に印加しながらアルミニウムの融点以下の温度に加熱して、樹脂体1f(樹脂1)を熱分解する製造方法により、作製することができる。 (もっと読む)


【課題】 異常過熱した際の安全性と、内部短絡およびデンドライトによる短絡に対する信頼性に優れ、かつ高温貯蔵時の特性低下を抑制した非水電解質電池を提供する。
【解決手段】 正極、負極、セパレータおよび非水電解質を構成要素とする非水電解質電池であって、前記セパレータは、セルロースおよびセルロース誘導体から選択される少なくとも1種を含む層と、絶縁性の無機物を主体として含む層とを有しており、前記セパレータのガーレー値で表される透気度が100〜500秒であり、バブルポイント法により測定される前記セパレータの最大孔径が0.01〜1μmであり、前記正極は、少なくともMnを含むリチウム含有複合酸化物を有するものであることを特徴とする非水電解質電池により、前記課題を解決する。 (もっと読む)


【課題】 ハイレート充電時における耐短絡性に優れた電気化学素子、その製造方法、および前記電気化学素子を構成し得るセパレータを提供する。
【解決手段】 非水電解液に対して室温で安定であり、かつ耐熱温度が150℃以上である樹脂(A)と、非水電解液に溶解し得る樹脂(B)とを含み、非水電解液に60分浸漬した後に取り出して室温で10分乾燥した後に、バブルポイント法により求められる最大細孔径が5μm以下であると、該セパレータを用いた電気化学素子により、前記課題を解決する。本発明の電気化学素子は、本発明の電気化学素子用セパレータの含有する樹脂(B)を、電気化学素子内において、非水電解液に溶解させて空孔を形成する製造方法により製造される。 (もっと読む)


【課題】 本発明は、電気化学素子の内部ショートを防止することにより、長期的に品質が安定した電気化学素子素子を提供することである。
【解決手段】 電気化学素子の内部ショートを防止するため、最大孔径が1μm以下で、ポリテトラフルオロエチレン(PTFE)を主成分とするポーラスフィルムのセパレータ105を使用する。 (もっと読む)


【課題】積層型の電池において、電極間のずれなどの発生が少なく且つ容易に製造できるリチウム二次電池を提供すること。
【解決手段】シート状のセパレータ13と、セパレータ13を介して交互に積層された複数の正負極板11、12とを備える発電要素(11、12、13)と、表裏面間を連通する連通孔が形成され、発電要素(11、12、13)の周囲を一周以上巻回して覆っており、表面が親水性である被覆材14とを有することにある。発電要素を被覆する被覆材として表面が親水性であるものを採用することにより電解液の浸透性が向上するとの知見に基づき本発明は完成されたものである。 (もっと読む)


【課題】プレドープ時間を短縮できる蓄電デバイスを提供する。
【解決手段】蓄電デバイスは、正極と負極とがセパレータを介して交互に積層される電極積層ユニットと、負極にリチウムイオンをプレドープする金属リチウムを備えたリチウム極とから構成されている。正極集電体および負極集電体には、貫通孔が厚さ方向に沿って形成されている。積層方向に隣り合う正極および負極の正極集電体および負極集電体の貫通孔の対向する側の開口面積の和(a)に対する、貫通孔の開口が重なる部分の面積(b)の率(重複率、孔重複率)b/a×100(%)を、30%以上とする。このように、積層する電極間の貫通孔の位置を最適化したことにより、リチウムイオンの移動距離を短くして拡散速度をコントロールすることが可能となる。 (もっと読む)


【課題】プレドープ時間を短縮できる蓄電デバイスを提供する。
【解決手段】蓄電デバイスとしてのリチウムイオンキャパシタ10は、正極11と負極12とがセパレータ13を介して交互に積層される電極積層ユニットと、負極12にリチウムイオンをプレドープする金属リチウムを備えたリチウム極とから構成されている。正極集電体11bおよび負極集電体12bには、貫通孔11c、12cが形成されている。貫通孔11c、12cの平均孔径(a)は1〜1000μmであり、セパレータ13の厚さと正極11および負極12の厚さの1/2の値との合計により規定される電極の厚さLの平均値(b)との比b/aの値は0.08〜530の範囲内にある。このように、貫通孔の径を所定の範囲としつつ、孔径と電極の厚さとが所定の関係を満たすように構成したので、リチウムイオンの移動距離を短くすることが可能となる。 (もっと読む)


【課題】高エネルギー密度、高出力かつ耐久性に優れた非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子を提供すること。
【解決手段】活性炭の表面に炭素質材料を被着させた複合多孔性材料であって、該複合多孔性材料におけるBJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とするとき、0.010≦Vm1≦0.250、0.001≦Vm2≦0.200、かつ1.5≦Vm1/Vm2≦20.0を満たすことを特徴とする非水系リチウム型蓄電素子用負極材料。 (もっと読む)


【課題】非水電解質電池に用いられる集電体で、成膜過程に起因する集電体の反りを防止でき、成膜後に集電体の外周縁部の切断等の作業が不要である集電体を提供する。
【解決手段】非水電解質電池用集電体100は、金属箔で形成され、少なくとも片面に電極層が成膜されて電極体2を構成する基体部20と、その基体部20から引き出される集電用のリード部30とを備える。基体部20とリード部30とは一体形成されている。基体部は、電極層が成膜される成膜領域21と、その基体部20の外周縁から内側に向かって成膜領域21までの幅が1.5mm以下の余尺領域22とを備えており、その余尺領域22は、成膜時に集電体100を保持する集電体ホルダ200に対する位置決め用に、複数の切欠部23を有する。 (もっと読む)


【課題】ニトリル基含有化合物を含む非水電解質を使用した際に、高温充電保存時の内部抵抗の増大化及びガス発生量が少なく、しかも、容量残存率が大きい非水電解質二次電池を提供すること。
【解決手段】正極活物質を含む正極極板と、負極活物質を含む負極極板と、ニトリル基含有化合物が含有されている非水電解質と、前記正極極板及び前記負極極板の間に設けられるセパレータとを備える非水電解質二次電池10であって、前記正極極板と前記セパレータの間もしくは前記負極極板と前記セパレータの間に無機粒子からなる層が形成されている。この無機粒子からなる層は正極極板の表面に形成されていることが好ましい。 (もっと読む)


【課題】良好なイオン伝導性を保ちつつ、液漏れの発生を効果的に抑制することができ、安全性の高い電解質層の提供。
【解決手段】本発明の固液ハイブリッド電解質層は、多孔質樹脂硬化物(A)、液体を含むイオン伝導体(B)より構成され、前記多孔質樹脂硬化物(A)は孔径0.1μm〜100μmの孔を有し、前記イオン伝導体(B)は前記孔内に配されていることを特徴とする。前記イオン伝導体(B)は、双連続キュービック液晶構造を有する化合物又はその塩(B1)、および液体電解質(B2)を含んでなることが好ましい。 (もっと読む)


【課題】有無機複合多孔性フィルム及びこれを用いる電気化学素子を提供すること。
【解決手段】本発明に係る有無機複合多孔性フィルムは、(a)無機物粒子、及び(b) 前記無機物粒子の表面の一部または全部に形成されたバインダー高分子コート層と、を含み、前記バインダー高分子により無機物粒子同士が結び付いて固定され、無機物粒子同士の間隙によりマイクロ単位の気孔が形成されたことを特徴とする。本発明に係る有無機複合多孔性フィルムを備える電気化学素子は、安全性及び性能アップを同時に図ることができる。 (もっと読む)


【課題】厚膜電極でありながら大電流充放電特性に優れ、高出力用途に適したリチウム二次電池用電極を提供する。
【解決手段】集電体上に合剤層を形成した正極10と、集電体上に合剤層を形成した負極12と、非水電解質とを備え、正極及び負極がセパレータ11を介して配置されたリチウム二次電池において、正極活物質としてLiNiMnCo(MはFe、V、Ti、Cu、Al、Sn、Zn、Mg、B及びWからなる群から選ばれる少なくとも一種)、負極活物質として黒鉛を含む。前記正極合剤層の片面厚みA(μm)が60以上85以下であって、片面厚みAと正極合剤層の密度B(g/cm)との積A×Bが160以上220以下であり、負極合剤層の片面厚みC(μm)が40以上75以下であって、片面厚みCと負極合剤層の密度D(g/cm)との積C×Dが65以上105以下であることを特徴とする。 (もっと読む)


【課題】 資材費が低減でき、自己放電不良がなく直流抵抗が低い電気化学デバイスを提供する。
【解決手段】 正極電極板および負極電極板の集電体に金属箔を用い、セパレータを介して積層する正極電極板および負極電極板ならびに電解液を含む電気化学素子と、正極電極板および負極電極板にそれぞれ電気的に接続される正極外部端子板2および負極外部端子板3と、電気化学素子を内蔵し周縁部にて密閉する外装フィルムシート4とを有し、それぞれの正極活物質電極シートおよび負極活物質電極シートに少なくとも1つの貫通孔を有し、正極電極板および負極電極板の面積に対して開孔率が0.1%以上10%以下である。 (もっと読む)


【課題】高い安全性と電池特性とを両立する。
【解決手段】第1の主面および第2の主面を有し、高分子樹脂を含む微多孔膜からなる第1の層と、第1の主面および第2の主面の少なくとも一方に形成され、電気的な絶縁性を有する無機粒子と高分子樹脂とを含み、無機粒子の平均粒径D20が、第1の層の表面に開口する細孔の平均細孔径よりも大きい第2の層とを備えるセパレータを用いる。第1の層の表面に開口する細孔の平均細孔径は、0.03μm以上2.00μm以下であることが好ましい。また、第1の層の平均膜厚が10.0μm以上30.0μm未満であり、無機粒子の平均粒径D90が第1の層の膜厚の1/3以下であることが好ましい。第2の層における粒子の体積分率が60vol%以上95vol%以下であり、第2の層の単位面積あたりの面積密度が0.2mg/cm2以上1.8mg/cm2以下であることが好ましい。 (もっと読む)


【課題】本発明は低抵抗に優れた電気化学素子用活性炭およびそれを用いた電気化学素子を提供することを目的とする。
【解決手段】本発明の電気化学素子用活性炭は、1.0nm≦W1<W2≦2.0nmであるW1とW2に対して、MP法により得られるスリット幅がW1以上かつW2以下である細孔容積の総和が、同スリット幅が2.0nm以下である細孔容積の総和の15パーセント以上であることを特徴としている。このようにW1以上かつW2以下である細孔容積を多く有した電気化学素子用活性炭を用いることにより、従来の電気化学素子に用いられる活性炭に比べて、活性炭の細孔内のイオンの電導度が向上し、電気化学素子用活性炭として低抵抗化を図ることが可能となる。 (もっと読む)


【課題】負極活物質のガス吸着能を高めることで、サイクル特性の劣化を抑制できる非水電解質電池を提供する。
【解決手段】負極5は、負極活物質として、細孔径10Å以上1000Å以下の積算細孔容積が3×10-4cm3/g以下である第1の黒鉛と、細孔径10Å以上1000Å以下の積算細孔容積が6×10-4cm3/g以上である第2の黒鉛とを含む。 (もっと読む)


【課題】電極タブをケース内部に収容して密閉した、耐漏液性に優れ、高信頼性かつ高エネルギー密度の積層型二次電池を提供する。
【解決手段】電極タブ120をパウチケース140の内部に収容した状態で、外部電極リード150をボルト170およびナット175とで結合することで、ケースのシーリング状態を良好にするとともに、結合部位の機械的な信頼性を確保する。また上記構成とすることにより、高エネルギー密度な積層型電池とすることができる。 (もっと読む)


41 - 60 / 237