説明

Fターム[5H050HA06]の内容

電池の電極及び活物質 (183,817) | 数値限定、大小、範囲、比の特定 (25,922) | 寸法 (5,066) | 孔径 (354)

Fターム[5H050HA06]に分類される特許

121 - 140 / 354


【課題】シリコン基体の破損、損傷を生ずることなく安定に生産でき、かつアスペクト比が高い細孔が得られ、面積の大きいものであっても容易に生産できる高規則性ポーラスシリコンの製造方法を提供すること。
【解決手段】ポーラスアルミナ膜2をシリコン基体1の表面に固定してドライエッチングを行い、前記シリコン基体1の表面に前記ポーラスアルミナ膜2の細孔と同じ配列の窪み3を形成し、次いで前記シリコン基体1を陽極としてフッ化水素酸を含む水溶液中で電解エッチングを行い、前記窪み3を選択的に溶解して細孔を形成し、ポーラスシリコン4を製造する。 (もっと読む)


【課題】粒状導電性物質を表面に有する正極活物質を備えた電池用正極において、粒状導電性物質が正極活物質の表面から剥離する事象を回避し得、品質安定性に優れた電池用正極を提供する。
【解決手段】本発明によって提供される電池用正極は、正極集電体と、正極活物質12とを備える電池用正極であって、正極活物質12は、その表面15に粒状導電性物質14を有しており、正極活物質12の少なくとも表面部15は、細孔16が形成されている多孔質構造であり、粒状導電性物質14は、その一部が細孔16内に埋設された状態で正極活物質12の表面15に保持されている。 (もっと読む)


【課題】充放電特性に優れるナトリウム二次電池を提供する。
【解決手段】第1電極と、炭素材料を有する第2電極とを含み、該炭素材料が、以下のラマン分光測定により得られるR値(ID/IG)が1.07以上3以下である炭素材料を有することを特徴とするナトリウム二次電池。
<ラマン分光測定>炭素材料について、ラマン分光測定を行い得られるラマンスペクトルについて、2つのローレンツ関数および1つのベースライン関数を用いてフィッティングを行って得られるフィッティング関数からベースライン関数を除去して得られるフィッティングスペクトルにおいて、横軸1300〜1400cm-1の範囲における縦軸の最大値をID、横軸1570〜1620cm-1の範囲における縦軸の最大値をIGとし、IDをIGで除して、R値(ID/IG)を得る。 (もっと読む)


リチウムをドープ及び脱ドープすることができる物質を含むコアと、前記コアの表面に形成された炭素層とを含み、前記炭素層は、厚さが40ないし150nmの気孔壁を間において前記炭素層上に規則的に配列された平均直径100ないし300nmのナノ気孔を含む3次元多孔性構造からなる、リチウム2次電池用負極活物質である。また、充放電実施後の前記ナノ気孔の平均直径は30ないし150nmであり、充放電実施後の前記ナノ気孔の間の気孔壁の厚さは40ないし120nmである。
(もっと読む)


【課題】鉛蓄電池正極の活物質利用率と鉛蓄電池のサイクル寿命特性を高いレベルで両立した鉛蓄電池を得ること。
【解決手段】鉛蓄電池の正極活物質の細孔容積を0.120cm3/g〜0.138cm3/gとし、かつ孔径0.2μm〜2.0μmの範囲の細孔容積が全細孔容積の45%以上、70%以下とする。また、さらに好ましくは、正極活物質が充填された正極板と、それに対応する負極板の各極板面が電解液に浸漬した状態で収納された、液式の鉛蓄電池に適用する。このような構成によって、正極活物質利用率とサイクル寿命特性を高いレベルで両立できるという、顕著な効果が得られる。 (もっと読む)


【課題】二次電池のサイクル特性を向上させる手段を提供することを目的とする。
【解決手段】本発明の二次電池用電極は、集電体の表面に活物質を含む活物質層が形成されてなる電極合材が、一対の剥離防止膜で挟持され、剥離防止膜の周縁部の少なくとも一部が、対向する他方の剥離防止膜と接合されてなる。 (もっと読む)


【課題】高エネルギー密度及び高出力密度に加え、高耐久性を兼ね揃えた非水系リチウム型蓄電素子を提供すること。
【解決手段】負極集電体に負極活物質層を設けた負極電極体、正極集電体に正極活物質層を設けた正極電極体、及びセパレータを積層してなる電極積層体、並びにリチウムイオンを含有した電解質を含む非水系電解液を外装体に収納してなる非水系リチウム型蓄電素子。該正極活物質は、メソ孔量をV1(cc/g)、マイクロ孔量をV2(cc/g)とする時、0.3<V1≦0.8、かつ、0.5≦V2≦1.0を満足し、比表面積が1,500m/g以上3,000m/g以下である活性炭を主成分とし含み、そして該負極活物質は、比表面積が1m/g以上200m/g未満である難黒鉛化性炭素材料を主成分として含む。 (もっと読む)


【課題】高エネルギー密度及び高出力密度に加え、高耐久性を兼ね揃えた非水系リチウム型蓄電素子を提供すること。
【解決手段】負極集電体に負極活物質層を設けた負極電極体、正極集電体に正極活物質層を設けた正極電極体、及びセパレータを積層してなる電極積層体、並びにリチウムイオンを含有した電解質を含む非水系電解液を外装体に収納してなる非水系リチウム型蓄電素子であって、該正極活物質は活性炭を主成分として含み、ここで、該活性炭は、直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とする時、0.3<V1≦0.8、かつ、0.5≦V2≦1.0を満足し、かつ、比表面積が1,500m/g以上3,000m/g以下であり、そして該負極活物質は黒鉛化物を主成分として含むことを特徴とする前記非水系リチウム型蓄電素子。 (もっと読む)


薄膜堆積プロセスによってバッテリを形成するための方法が開示される。高表面積を有し、且つ導電性の微細構造が上に形成されている導電性基板の表面上に、メソ多孔性炭素材料を堆積させる。次いで、メソ多孔性炭素材料の層上に多孔性の誘電セパレータ層を堆積させて、エネルギー貯蔵装置の半電池を形成する。メソ多孔性炭素材料は、CVD堆積させたカーボンフラーレンの「オニオン」およびカーボンナノチューブで構成され、大量の電気エネルギーを貯蔵するのに有用な濃度でリチウムイオンを保持することができる高空孔率を有する。さらに本発明の実施形態では、バッテリの構造に有用な高表面積の導電性領域を有する電極を形成することが可能である。ある構成では、電極は、多孔性の樹枝状構造を備える高表面積の導電性領域を有し、樹枝状構造は、電気めっき、物理蒸着法、化学蒸着法、溶射、および/または無電解めっきの技術によって形成することができる。
(もっと読む)


【課題】14族金属ナノチューブを含むアノード、該アノードを採用したリチウム電池、及び該アノードの製造方法
【解決手段】伝導性基板上に配された14族金属/半金属を含むナノチューブを含むアノード、該アノードを採用したリチウム電池、及び該アノードの製造方法を提供する。 (もっと読む)


本明細書に記載の実施形態は通常、エネルギー蓄積デバイス内で使用される電極構造を形成する方法および装置に関する。より詳細には、本明細書に記載の実施形態は、エネルギー蓄積デバイス向けの高容量電極構造を形成する際に使用されるナノ材料を特性化する方法および装置に関する。一実施形態では、エネルギー蓄積デバイス向けの電極構造を形成するプロセスが提供される。このプロセスは、拡散律速堆積プロセスによって第1の電流密度で基板を覆って円柱状の金属構造を堆積させるステップと、円柱状の金属構造の容量を測定して円柱状の金属構造の表面積を決定するステップと、第1の電流密度より大きい第2の電流密度で円柱状の金属構造を覆って3次元の多孔質の金属構造を堆積させるステップとを含む。
(もっと読む)


【課題】本発明は、大容量化とサイクル寿命の長寿命化を同時に満足可能な負極活物質、これを用いた二次電池およびキャパシタを提供することを目的とする。
【解決手段】リチウム板3とエッチング等の前処理が施されたアルミニウム箔2とを電解液4内に浸漬し対峙させ、アルミニウム箔2の電位を制御し電解することにより合金化して合成した、細孔を有した多孔質のリチウム含有アルミニウム合金製であり、前記細孔の開口径が5μm以下(ただし、ゼロは含まない)で、前記細孔の長さ/前記細孔の開口径比が10以上であることを特徴とする。 (もっと読む)


【課題】リチウムイオン蓄電デバイスの高負荷充放電時の特性と、作動温度範囲
を広くする。
【解決手段】リチウムイオン蓄電デバイスで使用する正極用活物質として、BET比表面積を1500m2/g以上〜3000m2/g以下の範囲内に限定し、且つ細孔直径範囲0.6〜200nmの細孔容積に占める細孔直径範囲0.6〜1nmの細孔容積の比Aを0≦A≦0.80の範囲にし、且つ細孔直径範囲0.6〜200nmの細孔容積に占める細孔直径範囲1〜6nmの細孔容積の比Bを0.20≦B≦1.0の範囲にする。かかる構成を採用することで、高負荷充放電特性の改善と、併せて−30℃でも十分に作動できるリチウムイオン蓄電デバイスを提供することができる。 (もっと読む)


【課題】負極材料のメソ・マクロ孔比表面積を規定することで、蓄電デバイスの特性改善を図る。
【解決手段】リチウムイオンをドープ、脱ドープする負極材料のメソ・マクロ孔表面積を所定範囲に規定する。かかる負極材料が、負極活物質の場合にはそのメソ・マクロ孔比表面積が11m2/g以上〜35m2/g以下となるように調製する。また、活物質以外にリチウムイオンをドープ、脱ドープする導電助剤等の炭素材料が負極材料に含まれる場合には、重量平均メソ・マクロ孔比表面積が上記範囲にあればよいとする。リチウムイオン蓄電デバイスの直流抵抗を低減し、高負荷充放電におけるエネルギー密度の向上、低温特性の向上が得られる。 (もっと読む)


【課題】構成元素にFe又はMnを含むリチウム化合物を正極活物質とする非水系リチウムイオン二次電池において、高温下で使用したときの容量劣化を抑制する。
【解決手段】本発明の非水系リチウムイオン二次電池は、構成元素に金属元素としてFe又はMnを含むリチウム化合物を正極活物質とする正極と、リチウムイオンを吸蔵・放出可能な炭素材料を負極活物質とする負極とを、非水電解液内で分離して配置したものである。そして、正極は、正極活物質に対して0.5〜5wt%のゼオライトを含有し、そのゼオライトは、有効細孔径が前記金属元素のイオン半径より大きく0.5nm(5Å)以下のものである。 (もっと読む)


【課題】アノード活物質、これを含むアノード、これを採用したリチウム電池及びその製造方法を提供する。
【解決手段】本発明は、多孔性遷移金属の酸化物を含むアノード活物質、これを含むアノード、これを採用したリチウム電池及びその製造方法である。本発明のアノード活物質は、多孔性遷移金属の酸化物を含み、前記多孔性遷移金属の酸化物がMo、Ti、V及びWからなる群から選択された一つ以上の遷移金属の酸化物であるアノード活物質である。前記多孔性遷移金属の酸化物の気孔は、2ないし50nmの直径を有する。 (もっと読む)


【課題】 充放電に際して集電体に加わる応力を低減させ、初期放電容量、および容量維持率などの充放電サイクル特性を向上させること。
【解決手段】 銅又は銅合金からなる導電層の断面が複数の結晶子によって構成され、前記複数の結晶子の中に、断面の面積が20μm2以上の結晶子が30%以上の面積比率で含まれ、
前記導電層中に更に空孔が含まれ、任意の断面における前記空孔の平均空孔数密度( 空孔数/断面積)が0.001〜1.00個/μm2であり、
前記導電層の表面が粗化処理されている、
電極集電体。 (もっと読む)


【課題】
窒素を含む導電性高分子と、導電性炭素材料とを配合して、0.2M〜5Mの水素イオン含有酸性電解液により、該配合された材料を活性化させ、該導電性炭素材料の重量を、配合された材料の総重量の1%〜40%としたプラスチック電極材料、及び該プラスチック電極材料を正負極として用いる二次電池を提供する。
【解決手段】
本発明では、マイクロメータサイズ、又はナノサイズの高導電性を有する炭素材料を電池電極材料に添加すると共に、水素イオンを高濃度に含む電解液により電極を活性化させるので、プラスチック電極の電子伝導性を向上させるができ、二次電池の充放電効率、及び寿命を改善するができる。 (もっと読む)


【課題】全固体型ポリマー電池において、細孔容積が大きい多孔性正極活物質を用いると、細孔内にドライポリマー電解質が浸透し難いため、正極活物質とドライポリマー電解質との接触が不十分になる。このためドライポリマー電解と正極活物質との反応面積が小さくなり、正極の理論容量に対して得られる電池容量が低くなる。
【解決手段】全固体型ポリマー電池用正極1は、正極集電体10と正極活物質層11とを含み、正極活物質層11は、多孔性正極活物質、導電材およびドライポリマー電解質を含有し、多孔性正極活物質はその内部に細孔を有し、細孔内部に沸点150℃以上の高沸点有機を含有する。これにより、多孔性正極活物質を用いても、電池容量の大きい全固体型ポリマー電池が得られる。 (もっと読む)


【課題】比表面積の大きな多孔質体であって、良好な電気化学特性が期待できる導電性ダイヤモンド中空ファイバー膜及び導電性ダイヤモンド中空ファイバー膜の製造方法を提供すること。
【解決手段】
本発明の導電性ダイヤモンド中空ファイバー膜は、導電性ダイヤモンドの中空ファイバーが三次元的に絡み合って形成されているため、大きな比表面積を有し、また、貫通した中空体である中空ファイバーにより構成されるので、電解液等の流体の通過も容易であるため、高い電気化学的特性を得ることができる。かかる本発明の導電性ダイヤモンド中空ファイバー膜は、耐熱性のある繊維が三次元的に絡み合って形成される多孔質基材に導電性ダイヤモンドナノ粒子分散溶液を塗布し、多孔質基材にダイヤモンドナノ粒子を固定し、化学気相成長法により、多孔質基材の表層部(表面及びその内部)に導電性ダイヤモンド膜を合成した後、導電性ダイヤモンド膜から多孔質基材を除去することにより得ることができる。 (もっと読む)


121 - 140 / 354