説明

Fターム[5H115QE18]の内容

車両の電気的な推進・制動 (204,712) | 制御時の状態 (7,652) | 駆動源切換時 (282)

Fターム[5H115QE18]に分類される特許

1 - 20 / 282


【課題】電化区間,非電化区間それぞれにおいて最適な電源を用いる方法として、複数の異なる電力源(架線,エンジンにより駆動される発電機,燃料電池)に対応するシステムが提案されている。これによれは、電化区間,非電化区間それぞれにおいて、最適な駆動システムにて、列車を運行することが可能となる。しかしながら、非電化区間を走行することを前程としたシステムと比較して、エンジンの起動,停止の機会が増加することになる。この結果、エンジンを起動するためのスターターモータの信頼性が低下すると言う問題が生じる。
【解決手段】エンジンに接続された発電機を、駆動システムの有する電力変換回路によって電動機として動作させ、エンジンを起動することで、スターターモータの負荷を低減し、高信頼の駆動システムを実現する。 (もっと読む)


【課題】ハイブリッド車両のバッテリレス走行において、電動機および発電機の駆動に用いられる直流電圧を一定に制御するとともに、車両の駆動トルクの変動を抑制するように、電動機および発電機のトルクを制御する。
【解決手段】HVECU70は、SMR55をオフするバッテリレス走行時には、電力ライン54の電圧VHを電圧指令値に制御するためのMG1およびMG2の出力トルクである電力制御トルクを算出する。さらに、HVECU70は、MG1およびMG2が電力制御トルクを出力したときと、出力しないときとの間での駆動軸32aに出力可能なトルク範囲の差分を算出し、さらに、当該差分の時間軸に対する変化量を制約した値を反映して駆動トルクの上下限範囲を定める。MG1およびMG2のトルク指令値は、当該上下限範囲内で車両走行のための要求トルクに最も近いトルクが駆動軸32aに発生するように設定される。 (もっと読む)


【課題】ハイブリッド車両の走行中に内燃機関の始動に伴うショックの発生を抑制すると共に運転停止されていた内燃機関をより適正に始動させる。
【解決手段】エンジンの運転停止中におけるエンジンの始動判定に際して要求走行パワーと比較される始動判定パワーPref1は、当該始動判定パワーPref1をリングギヤ軸のトルクに換算することにより得られる換算始動判定トルクTc1が車速Vが高いほど小さくなるように設定され、エンジンの始動判定に際して要求トルクと比較される始動判定トルクTref1は、車速Vが間欠禁止車速Vrefよりも低い基準車速V0以下であるときに換算始動判定トルクTc1以下となると共に車速Vが基準車速V0を上回っているときに換算始動判定トルクTc1よりも大きくなるように設定される。 (もっと読む)


【課題】気筒間空燃比ばらつき異常の検出精度を確保する。
【解決手段】多気筒内燃機関および電動機と、内燃機関の気筒間空燃比ばらつき異常を検出する検出手段と、車両を内燃機関および電動機の両方で駆動させるハイブリッド(HV)モードおよび車両を内燃機関のみで駆動させるエンジンモードを実行可能な制御手段とを備える。制御手段は、HVモードのとき所定の動作線b1上を内燃機関の実際の動作点c11が移動するよう内燃機関および電動機を制御し、HVモード実行中に所定の変更要求があったとき動作線をb2に変更してエンジンモードに移行し、且つHVモード実行中にばらつき異常検出が未実行または実行中であるとき動作線の変更およびエンジンモードへの移行を禁止してハイブリッドモードを維持する。 (もっと読む)


【課題】運転者の意思等に応じて、NVの抑制と応答性の向上とを調整可能なハイブリッド車両の制御装置を提供する。
【解決手段】ハイブリッド車両の制御装置は、エンジンと、第1回転電機と、第2回転電機と、動力伝達機構と、制御手段と、を備える。動力伝達機構は、相互に差動回転可能な複数の回転要素を備える。制御手段は、第1走行モードから、第2走行モードへ走行モードを切り替える場合、クラッチを係合してからエンジンを始動させる。そして、制御手段は、騒音又は/及び振動の抑制を優先すべき状態では、エンジン回転数を略0にしてから、クラッチを係合状態にし、エンジンを始動させる。 (もっと読む)


【課題】内燃機関を始動する際に内燃機関の回転により生じるトルク脈動を抑制するために第1電動機から出力する制振トルクを求める際の演算量をより少なくする。
【解決手段】基本脈動トルクTevとモータMG1の回転軸のトルクに換算するためのゲインとを乗ずることによりモータMG1から出力する制振トルクTmvを演算する(S150)。基本脈動トルクTevは、クランク角CAと基本脈動トルクTevとの関係を予め定めた基本脈動トルク設定用マップを用いて設定され(S110)、さらにゲインは、始動開始時クランク角CAstとエンジンの回転数Neと第1ゲインGa1との関係を予め定めた第1ゲイン設定用マップを用いて設定される第1ゲインGa1と(S120)、クランク角CAと第2ゲインGa2との関係を予め定めた第2ゲイン設定用マップを用いて設定される第2ゲインGa2と(S130)の積として演算される(S140)。 (もっと読む)


【課題】目標充電電力と実充電電力との差に応じて内燃機関の目標運転ポイントを変更するときの振動や騒音の発生を抑制する。
【解決手段】バッテリ50の実充放電電力Pbが充放電要求パワーPb*よりも充電電力として大きく、充放電要求パワーPb*と実充放電電力Pbとの差がなくなるように両者の差(Pb*−Pb)に応じてエンジン22の目標回転数Ne*と目標トルクTe*とからなる目標運転ポイントを変更するときには、エンジン22を効率よく動作させる運転ポイントを規定するように予め定められた動作ラインに沿って目標運転ポイントを変更する場合に比べてエンジン22の回転数の変化が抑制されると共にエンジン22の出力トルクが低下するように目標運転ポイントが変更される(ステップS110−S150)。 (もっと読む)


【課題】エンジン始動時のショックの発生等を抑制可能なハイブリッド車両の制御装置を提供する。
【解決手段】ハイブリッド車両の制御装置は、ハイブリッド車両に搭載され、エンジンと、第1回転電機と、第2回転電機と、動力伝達機構と、制御手段と、を備える。動力伝達機構は、相互に差動回転可能な複数の回転要素を備える。制御手段は、第1走行モードから、第2走行モードへ走行モードを切り替える際、クラッチを、滑らせながら係合状態にする。そして、制御手段は、要求駆動力に応じてクラッチの滑り量を変更する。 (もっと読む)


【課題】内燃機関の回転駆動の停止後のモータ走行時に、不必要なバッテリ消費を抑制しつつ動力伝達機構を潤滑することができるハイブリッド駆動装置およびハイブリッド駆動装置の制御装置を提供すること。
【解決手段】リングギヤ3Rの内歯とピニオンギヤ3Pの外歯との噛合部32に対して、ボールベアリング27、28のアウタレース27a、28aの内周部27i、28iがリングギヤ3Rの放射方向内方に位置するようにボールベアリング27、28をケース25の環状支持部25a、25bに取付け、リングギヤ3Rの内周部と一対のボールベアリング27、28とによってリングギヤ3Rの底部にオイル溜まり33を形成した。 (もっと読む)


【課題】 原動機と電動機とを駆動源として備える車両のHEV走行中において、プレシフトするときの所謂駆動力抜けを防止できる車両の駆動力制御装置を提供する。
【解決手段】 駆動力制御装置は、HEV走行中における奇数段から偶数段へのアップシフトのイナーシャ相t3〜t6中に、モータトルクTeを0にし、第1噛合機構SM1を、前段を確立させるギア列の駆動ギアと第1駆動軸との連結を断つニュートラル状態に切り替えた後、次段よりも変速比の小さい変速段を確立させるギア列の駆動ギアと第1駆動軸とを連結させる状態に切り替える。そして、第2クラッチトルクTc2をエンジンのイナーシャトルクが伝達されるようにTQ1からTQ4に上昇させ、0となったモータトルクTe分のトルクを補填する。 (もっと読む)


【課題】内燃機関の無駄な触媒暖機を抑制して燃費の向上を図る。
【解決手段】要求パワーPd*が始動用閾値Pstart未満のときにパワー用カウンタCpをカウントアップし(S400〜410)、要求パワーPd*が始動用閾値Pstart以上になると、パワー用カウンタCpが閾値Cref未満のときには要求パワーPd*に基づいてエンジンが始動される可能性は高いと予想して暖機実行許可フラグFを内燃機関の触媒暖機の実行を許可することを示す値1にセットし、パワー用カウンタCpが閾値Cref以上の場合には要求パワーPd*に基づくエンジンが始動される可能性は低いと予想して蓄電割合SOCが所定割合Shv1未満の場合を除いて暖機実行許可フラグFに触媒暖機の実行を許可しないことを示す値0のままとするから(S420〜440)、内燃機関の無駄な触媒暖機を抑制して燃費の向上を図ることができる。 (もっと読む)


【課題】目標エンジン回転数に基づく第1電動機の目標回転数と当該第1電動機の回転数との差がなくなるように目標トルクを設定すると共に当該目標トルクに応じたトルクを出力するように第1電動機を制御する際に、ねじれ要素の共振による影響を良好に低減して内燃機関の回転数を目標エンジン回転数に良好に近づける。
【解決手段】エンジン22が運転されるときに目標回転数Ne*に基づくモータMG1の目標回転数Nm1*とフィルタによりダンパ28の共振による影響成分が除去されたモータMG1の制御用回転数Nm1cとの差がなくなるようにモータMG1のトルク指令Tm1*が設定され、トルク指令Tm1*に応じたトルクを出力するようにモータMG1が制御される。そして、フィルタは、ダンパ28に接続されるマスの大きさに応じてモータMG1の回転数から除去されるカット周波数帯fcの成分を異ならせるように構成される。 (もっと読む)


【課題】車両のシステム効率を向上できる車両制御装置を提供すること。
【解決手段】蓄えられた圧力を車両100の走行用の動力に変換して出力する第一動力源32と、蓄えられた電力を車両の走行用の動力に変換して出力する第二動力源4と、を備え、車両の走行負荷が大きい場合、走行負荷が小さい場合よりも第一動力源および第二動力源のうち第一動力源が出力する動力の割合を高める。走行負荷が大きいほど第一動力源が出力する動力の割合を高めるようにしてもよい。 (もっと読む)


【課題】 クラッチの劣化を抑制しつつ、運転性を向上可能な車両の制御装置を提供すること。
【解決手段】 車両の駆動力を出力するモータと、前記モータと駆動輪との間に介装され指令油圧に基づいて伝達トルク容量を発生するクラッチと、前記クラッチをスリップ制御すると共に、前記クラッチのモータ側の回転数が前記クラッチの駆動輪側回転数よりも所定量高い回転数となるように前記モータを回転数制御する走行モードと、車両停止状態を判定する車両停止状態判定手段と、前記モータの実トルクを検出するトルク検出手段と、前記走行モード中に車両停止状態と判定されたときは、前記指令油圧を初期指令油圧から低下させて前記モータの実トルク変化に応じた補正後指令油圧を設定し、該補正後指令油圧を出力する前に前記補正後指令油圧よりも高いプリチャージ指令油圧を出力する車両停止時伝達トルク容量補正手段と、を備えた。 (もっと読む)


【課題】油温や電源温度にかかわらず、モード切り替え時のモータトルク制御変化と第2クラッチトルク容量制御変化とを調時させて、空吹けやエンジンストールを防止する。
【解決手段】油温が設定温度未満の低油温時や、バッテリ温度が設定温度未満の電源低温時は、電気(EV)走行モードまたはハイブリッドHV走行モードの間に、EVモードおよびHEVモード間のWSCモードで行うモータ回転数制御で用いる目標モータ回転数として、低油温時用目標モータ回転数または電源低温時用目標モータ回転数をWSCモータ回転数制御マップにセットして学習する(S16,S18)。WSCモードである間に、S16またはS18で学習した低油温時用目標モータ回転数または電源低温時用目標モータ回転数に基づき、モータの回転数制御を行う。 (もっと読む)


【課題】車両後進時における車両エネルギ効率の悪化を抑制可能な前後輪駆動車両を提供する。
【解決手段】後輪駆動装置1と前輪駆動装置6とを備えた車両3であって、後輪駆動装置1は、車両3の駆動力を発生する電動機2A、2Bと、電動機2A、2Bと後輪Wrとの動力伝達経路上に設けられ、解放又は締結することにより電動機2A、2B側と後輪Wr側とを遮断状態又は接続状態にする油圧ブレーキ60A、60Bと、電動機2A、2Bを制御するとともに油圧ブレーキ60A、60Bを制御するECU45と、電動機2A、2Bと後輪Wrとの動力伝達経路上に油圧ブレーキ60A、60Bと並列に設けられる一方向クラッチ50と、を備える。車両後進時には、少なくとも後輪駆動装置1に後進駆動力を発生させて後進させ、後輪駆動装置1に後進駆動力を発生させるときに、ECU45は油圧ブレーキ60A、60Bを締結して電動機2A、2B側と後輪Wr側とを接続状態にし、電動機2A、2Bを逆方向の回転動力が発生するよう駆動する。 (もっと読む)


【課題】ハイブリッド車両における電動機の高回転化を好適に抑制する。
【解決手段】ハイブリッド車両の駆動装置(100)は、内燃機関(200)及び電動機(MG1)を含む動力要素と、駆動軸(500)と、第1(S1)、第2(R1)、第3回転要素(C1)を含む動力伝達機構(300)と、内燃機関及び連結部位(410)間に設けられた第1クラッチ(710)と、第2回転要素及び連結部位間に設けられた第2クラッチ(720)と、第3回転要素及び連結部位間に設けられた第3クラッチ(730)と、第1及び第3クラッチを係合し第2クラッチを解放する第1の動力伝達モード、第1クラッチを解放し第2及び第3クラッチを係合する第2の動力伝達モード、及び第1及び第2クラッチを係合し第3クラッチを解放する第3の動力伝達モードを実現可能な切替手段(100)とを備える。 (もっと読む)


【課題】ハイブリッド車両の燃費の向上を図る。
【解決手段】ハイブリッド車両の制御装置は、ハイブリッド車両がEV走行モードで走行している場合において、要求駆動力が所定の閾値になったときに、内燃機関をクランキングするように第1回転電機を制御する始動手段と、内燃機関の停止中にクランク位置を検出するクランク位置検出手段と、内燃機関がクランキングされる前に、検出されたクランク位置に基づいて、クランク位置が目標クランク位置となるように第1回転電機を制御するクランク位置制御手段とを備える。更に、検出されたクランク位置に基づいて内燃機関の始動に要する始動時間を推定し、該推定した始動時間に応じて、内燃機関の始動完了時にバッテリから第1及び第2回転電機に供給される電力がバッテリの出力制限に近づくように、所定の閾値を変更する閾値変更手段を備える。 (もっと読む)


【課題】クルーズ走行中に一時加速してから、再びクルーズ走行に復帰する際の違和感を抑制する。
【解決手段】クルーズ要求トルクTcがアクセル要求トルクTaよりも大きい状態から(S14の判定が“No”)、アクセル要求トルクTaがクルーズ要求トルクTcよりも大きくなり、一時加速した場合には(14Sの判定が“Yes”)、禁止フラグをFNG=1にセットし(S25)、許可フラグはFOK=0にリセットする(S26)。その後、運転者のアクセル操作が解除されても(S35の判定が“Yes”)、自車速がクルーズ要求トルクTcに従ったクルーズ要求車速に戻るまでは(S29の判定が“No”)、禁止フラグがFNG=1、及び許可フラグがFOK=0の状態を保持し、一時加速後のエンジンの停止を禁止する(S37)。 (もっと読む)


【課題】車両の総合的なエネルギ効率を向上可能な車両の制御装置を提供すること。
【解決手段】動力源の運転によって発電する発電部と、発電部からの電力供給によって車両の駆動系を駆動する駆動部とを備えた車両の制御装置は、アクセル操作に応じた駆動部の駆動に必要な発電部の出力である要求発電部出力を導出する要求発電部出力導出部と、発電部の出力が要求発電部出力に到達するまでの発電部の出力変更速度がそれぞれ異なる複数の場合の内、所定時間の期間にわたる発電部の効率の累計が最も大きい場合の出力変更速度を導出する出力変更速度導出部と、前回算出した発電部の出力、出力変更速度及び処理周期に基づいて、発電部の現在の出力を算出する実発電部出力算出部と、発電部の現在の出力に対応する動力源の運転点を導出する動力源運転点導出部とを備え、動力源運転点導出部が導出した運転点で運転するよう動力源を制御する。 (もっと読む)


1 - 20 / 282